Shi, Lijuan and Zhang, Zhihua and Hölscher, Christian (2017) A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model. Behavioural Brain Research, 327. pp. 65-74. ISSN 0166-4328
1_s2.0_S0166432817302243_main.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.
Download (1MB)
DA4_in_STZ_rat_model.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (1MB)
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, accompanied by memory loss and cognitive impairments, and there is no effective treatment for it at present. Since type 2 diabetes (T2DM) has been identified as a risk factor for AD, the incretins glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP), promising antidiabetic agents for the treatment of type 2 diabetes, have been tested in models of neurodegenerative disease including AD and achieved good results. Here we show for the first time the potential neuroprotective effect of a novel dual GLP-1/GIP receptor agonist (DA-JC4) in the icv. streptozotocin (STZ)-induced AD rat model. Treatment with DA-JC4 (10 nmol/kg ip.) once-daily for 14 days after STZ intracerebroventricular (ICV) administration significantly prevented spatial learning deficits in a Y- maze test and Morris water maze tests, and decreased phosphorylated tau levels in the rat cerebral cortex and hippocampus. DA-JC4 also alleviated the chronic inflammation response in the brain (GFAP-positive astrocytes, IBA1-positive microglia). Apoptosis was reduced as shown in the reduced ratio of pro-apoptotic BAX to anti- apoptotic Bcl-2 levels. Importantly, insulin signaling was re-sensitized as evidenced by a reduction of phospho-IRS1Ser1101 levels and phospho-AktSer473 up-regulation. In conclusion, the novel dual agonist DA-JC4 shows promise as a novel treatment for sporadic AD, and reactivating insulin signaling pathways may be a key mechanism that prevents disease progression in AD.