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Highlights 

 

 Novel dual GLP-1/GIP receptor agonists are superior to single GLP-1 agonists 

 In the icv. STZ model of neurodegeneration, a novel dual agonist was highly effective at low doses 

 Cognition was protected, inflammation reduced 

 Insulin signalling was re-sensitized, apoptotic signalling reduced 

 

 

Abstract 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, accompanied by memory loss and 

cognitive impairments, and there is no effective treatment for it at present. Since type 2 diabetes (T2DM) has 

been identified as a risk factor for AD, the incretins glucagon-like peptide 1 (GLP-1) and glucose dependent 

insulinotropic polypeptide (GIP), promising antidiabetic agents for the treatment of type 2 diabetes, have 

been tested in models of neurodegenerative disease including AD and achieved good results. Here we show 

for the first time the potential neuroprotective effect of a novel dual GLP-1/GIP receptor agonist (DA-JC4) 

in the icv. streptozotocin (STZ)-induced AD rat model. Treatment with DA-JC4 (10 nmol/kg ip.) once-daily 

for 14 days after STZ intracerebroventricular (ICV) administration significantly prevented spatial learning 

deficits in a Y- maze test and Morris water maze tests, and decreased phosphorylated tau levels in the rat 

cerebral cortex and hippocampus. DA-JC4 also alleviated the chronic inflammation response in the brain 

(GFAP-positive astrocytes, IBA1-positive microglia). Apoptosis was reduced as shown in the reduced ratio 

of pro-apoptotic BAX to anti- apoptotic Bcl-2 levels. Importantly, insulin signaling was re-sensitized as 

evidenced by a reduction of phospho-IRS1Ser1101 levels and phospho-AktSer473 up-regulation. In conclusion, 

the novel dual agonist DA-JC4 shows promise as a novel treatment for sporadic AD, and reactivating insulin 

signaling pathways may be a key mechanism that prevents disease progression in AD.  

 

 

Keywords: Alzheimer’s disease; Incretin; Insulin signaling; Apoptosis; Inflammation; tau phosphorylation; 

Type 2 diabetes mellitus 

 

 

 

1. Introduction 

 

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and it is estimated that the 

population of dementia patient worldwide may reach 131.5 million in 2050 due to longer life-expectancy in 

the industrialized nations. The pathology of AD is characterized by the presence of neurofibrillary tangles 
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composed of hyperphosphorylated tau protein (p-tau) and amyloid-β peptide accumulation, as well as 

neuronal loss in different brain regions which are associated with progressive memory loss and cognitive 

decline [1-3]. Drug therapies for AD are currently restricted and mainly depend on three cholinesterase 

inhibitors and the receptor inhibitor memantine, but these drugs cannot fundamentally halt or delay the 

progression of the disease at present [4-7].  

Type 2 diabetes mellitus (T2DM) is a risk factor for developing AD [8-10]. Patients with T2DM present 

with learning and memory deficits [11] and there is an increase an approximately twofold risk of AD [8, 12]. 

Also, AD shares many pathophysiological features with T2DM, including insulin resistance, inflammatory 

stress and amyloid-β peptide accumulation [13]. Based on these shared features, insulin resistance is one of 

the key underlying mechanisms [12, 14, 15].  

Incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) 

which can treat T2DM have been proposed as a novel therapeutic schedule for AD. Extensive preclinical 

studies show good effects in animal models of AD by reducing memory loss, synapse loss and amyloid 

plaque load [16-19], decrease the hyperphosphorylation of τ protein [20-23], exert anti-inflammatory 

function [24-26] and reduce neuronal loss [22, 27, 28]. A pilot study testing the GLP-1 analogue liraglutide 

in AD patients showed good protective effects in FDG-PET brain scans [29]. Other clinical trials in patients 

with AD or Parkinson’s disease (PD) are currently ongoing [30]. Dual GLP-1 and GIP receptor agonists 

have been developed to treat T2DM and have shown first positive results in patients with diabetes [31]. We 

have tested one of these dual agonists named DA-JC1 in the MPTP mouse model of PD with good results 

[32, 33]. Here, we are testing the newer dual agonist DA-JC4 that has been optimized to cross the 

blood-brain barrier in the icv. streptozotocin (STZ) rat model of AD. STZ desensitizes insulin signaling in 

the brain [34, 35] and produces a range of pathological changes that are also found in the brains of AD 

patients [13, 36, 37], such as inducing cognitive impairment [21, 38-40], chronic inflammation in the brain 

[41] and enhanced tau protein phosphorylation [22, 42].   

We tested the novel dual agonist DA-JC4 in this model and evaluated memory formation, tau 

phosphorylation, chronic inflammation, insulin re-sensitization, growth factor and apoptosis cell signaling. 

 

2. Materials and methods 

2.1 Drugs  

Streptozotocin (STZ) was purchased from Sigma-Aldrich (St Louis, MO, USA). The dual agonist DA-JC4 

was obtained from ChinaPeptides (Shanghai, China). The purity of the peptide was 95% which was 
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confirmed by reversed-phase high performance liquid chromatography (HPLC) and the peptide was 

identified using matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometry. 

 

2.2 Animals and experimental groups 

Male Sprague-Dawley rats (210-230g) were procured from the Animal Center of Shanxi Medical University. 

The animals were maintained in plastic cages (5 rats per cage) with the temperature of 25 ± 2◦C and the 

humidity of 50 ± 10% and a 12 h light-dark cycle. Animals were allowed free access to food and water. All 

experimental procedures were conducted in accordance with guidelines for Care and Use of Laboratory 

Animals and approval of the Research and Ethics Committee of the University. At the first stage of 

experimental design, rats were randomly divided into four groups: 1) Control group: artificial cerebral spinal 

fluid (aCSF) intra-cerebral ventricular (ICV) injection plus saline intraperitoneal (IP) injection; 2) DA-JC4: 

aCSF ICV injection plus dual agonists IP injection; 3) STZ group: STZ ICV injection plus saline IP injection; 

4) STZ + DA-JC4 group: STZ ICV injection plus dual agonist IP injection. 

 

2.3. Drug administration 

Rats in the STZ group received an ICV injection of STZ (3 mg/kg body weight) dissolved in 10 μl aCSF 

(NaCl 140mM; KCl 3.0mM; CaCl2 2.5 mM; MgCl2 1.2 mM; NaH2PO4 1.2 mM, PH 7.4), and the rats in the 

sham-operation received the same volume of aCSF. After stereotaxic surgery, rats were treated with a daily 

IP injection of DA-JC4 (10 nmol/kg body weight) or saline for 2 weeks. 

 

2.4. Injection of STZ 

We followed the protocol published previously [43]. For stereotaxic surgery, anesthesia was induced with 10% 

Chloral hydrate (0.3 ml/100g, ip). Animals were placed on stereotaxic frame with the following coordinates 

(0.8 mm posterior to bregma; 1.5mm lateral to the sagittal suture; 3.6 mm ventral) for the left side of lateral 

ventricle injection. STZ injection to the lateral ventricle was carried out with a Hamilton syringe in a 10 

microliter volume over 15 s. The needle remained in position for additional 10 minutes to prevent reflux. 

The rats in the sham-operation group were given the ICV injection of aCSF in the same manner. After 

surgery, the rats were put in cage individually and allowed to access to food and water freely. 

 

2.5 Behavioral procedure 

http://topics.sciencedirect.com/topics/page/Streptozotocin
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At the nineteenth day after intracerebroventricular injection of STZ, behavioral estimations were tested in 

time sequence. The behavioral tests were conducted between 09:00 a.m. and 01:00 p.m. Experiments were 

carried out in a sound-proof and air-regulated experimental room. Rats were habituated at least 30 min 

before each test. 

 

2.5.1 Y-maze test 

Spatial working memory was investigated by recording spontaneous alternation behavior in a Y-maze 

apparatus [44]. The maze consisted of three arms (50 × 10 × 20 cm3 and 120° apart). Each rat was placed at 

the terminus of one arm and allowed to move freely through the maze for 8 min. When the rat's tail was 

entirely within the arm, entry was considered to be complete. The apparatus was cleaned with a 10% ethanol 

solution and then dried with a paper towel after each trial. The total number of arm entries (N) and the 

sequence of entries were recorded visually. Alternation behavior was defined as successive entries into all 

three arms on consecutive occasions. The alternation rate (%) = [the total number of alternations/ (N-2) 

*100] .  

 

2.5.2 Morris water maze test 

MWM task was performed to evaluate spatial learning and memory [45]. A black circular water tank with 

the 150 cm diameter and 60 cm height was used. The pool surrounded by a blue curtain was filled with tap 

water to a depth of 30 cm, in which the temperature of water was controlled to 28 ± 1 °C. A transparent 

platform (14 cm in diameter) was located in the midpoint of the target quadrant and submerged 1.5 cm 

beneath the surface of the water. Movements of rats were monitored and recorded via a video camera located 

above the pool. Rats were placed randomly in the water facing the wall in one of the four quadrants and 

allowed to swim freely to find the hidden platform. If a rat failed to find the platform within 120 s at the first 

day, it would be guided onto the platform for 15 s. A behavior software system (Ethovision 11.5, Noldus 

Information Technology, Wageningen, Netherlands) was used to record the escape latency of five 

consecutive days, the length of time to reach the platform. To control the influence of different animal’s 

athletic ability, the swim speed was also recorded and analyzed. On day 6, the hidden platform was removed 

and probe trial was performed. The percentage of swimming time spent in the target quadrant was record in 

this phase (n = 8–10 each group). 

 

2.6 Immunohistochemistry 
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After the behavior tests, rats (n=4-5) were transcardially perfused with saline and 4% paraformaldehyde. 

The brains were removed and fixed in 4% paraformaldehyde for 24 h. After fixation, the tissues were 

dehydrated and embedded in paraffin. 5μm sections were cut with a microtome and stored at 20 ◦C until 

immunohistochemistry was performed.    

 

Sections were treated with xylene and graded ethanol solutions in turn. Endogenous peroxidase activity was 

blocked with 3% H2O2 for 10 min. Then the sections were pretreated using heat mediated antigen retrieval 

with citrate buffer. After blocked with 5% BSA, the sections were incubated with p-Tau (Ser396) (rabbit 

anti- p-Tau (Ser396); 1:1000, Abcam, Cambridge, MA, USA), GFAP (rabbit anti-GFAP; 1:100; Boster 

Biotechnology Co., Ltd. Wuhan, China) and IBA1 (rabbit anti-IBA1; 1:100; Boster Biotechnology Co., Ltd. 

Wuhan, China) at 37 ◦C for 2 h. Then they were incubated with biotinylated goat anti-rabbit IgG at 37 ◦C for 

30 min and followed by the avidin-biotin peroxidase complex reagent (Boster Biotechnology Co., Ltd. 

Wuhan, China) at 37 ◦C for 30 min. The peroxidase was visualized with 3, 3-diaminobenzidine (DAB) 

(Zhongshan Golden Bridge Biotechnology Co., Ltd. Beijing, China). The photomicrographs of all stained 

sections were captured with a digital camera (Motic BA210) under a Zeiss light microscope and 

quantitatively analyzed using Image J software (Version 6.0, developed by National Institutes of Health). 

Stereological rules were applied [46] and analysis was blind to treatment. 

 

2.7 Western blot 

The hippocampus and cortex tissue (n=4-5) were dissected and stored at -80 ◦C for immunoblot analysis. 

These tissues were cut into pieces in cold RIPA lysis buffer (Beyotime Institute of Biotechnology, Shanghai, 

China). After 2 h, tissue lysates added with phenylmethanesulfonyl fluoride (PMSF) and phosphotransferase 

inhibitor were fully homogenized. Then protein supernatant was taken after centrifugation (14 000 × g for 

20minutes at 4°C). Protein concentration was measured using BCA protein assay (Boster Biotechnology Co., 

Ltd. Wuhan, China). Samples mixed with loading buffer to the same concentration were boiled for 5 min. 

Samples with equivalent amounts of protein were run on 8%, 10% or 12% SDS-polyacrylamide gel and 

transferred onto polyvinylidene difluoride (PVDF) membrane. After blocking the membrane with 5% bovine 

serum albumin (Boster Biotechnology Co., Ltd. Wuhan, China) in TBST (Tris-buffered saline contains 0.05% 

Tween-20) for 1 h, the membranes were probed overnight at 4°C with primary antibodies that specifically 

detect IRS-1 (1:500; Abcam, Cambridge, UK), p-IRS-1 (Ser1101) (1:750; Cell Signaling Technology, 

Danvers, MA), Akt (1:1000; Cell Signaling Technology, Danvers, MA), p-Akt (Ser473, 1:2000; Cell 
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Signaling Technology, Danvers, MA), Bcl-2 (1:500; Bioworld Technology Co., Ltd. Nanjing, China), Bax (1: 

500; Bioworld Technology Co., Ltd. Nanjing, China), and β-Actin (1:5000; Abcam, Cambridge, UK), 

followed by labeled with secondary antibodies (goat-anti-rabbit IgG-horseradish peroxidase, HRP), 1:5000; 

(Abcam, Cambridge, UK) at 4 ◦C for 2h. The relative immunoreactive bands were captured with a 

chemiluminescent imaging system (Sagecreation, Beijing, China), visualized by using ECL-enhanced 

chemilluminescence (Boster Biotechnology Co., Ltd. Wuhan, China), and digitalized by the image system of 

Quantity One 4.31 (Bio-Rad, Hercules, CA, USA).  

 

2.8. Statistical analysis 

All experiments data were presented as means ± standard error (SEM). Statistical analysis was conducted 

using GraphPad Prism 5 (Graph-Pad software Inc., San Diego, CA, USA). Statistical significance was 

considered at P < 0.05, the result of acquisition task in MWM was evaluated by two-way ANOVA with 

repeated measures, and other data were analyzed by one-way ANOVA and Student-Newman-Keuls post-hoc 

tests.  

 

3. Results    

 

3.1 DA-JC4 improved STZ-induced learning and memory impairment  

In the Y-maze test, there was an overall difference between groups (one-way ANOVA, F=3.931, P < 0.05). 

As shown in Fig.1A, rats that received STZ alone (0.4708 ± 0.04312) exhibited significant impairments in 

spontaneous alternation compared with the control rats (0.6811 ± 0.03200) (P < 0.05). Moreover, treatment 

with DA-JC4 (0.6283 ± 0.06798) partially reversed the impairment induced by STZ treatment (P < 0.05) as 

shown in Newman-Keuls post-hoc tests, n=8-10 per group (Fig.1A). 

In the Morris water maze test, the escape latency was gradually shortened during the training period. 

However, there is virtually no difference until on the fourth and fifth day (Figure 1.B). Based on the 

two-way ANOVA analysis, the effect of DA-JC4 treatment on escape latency was significant (F=15.20, 

P<0.0001 for groups). There was no interaction between groups and time (F=0.5319, P=0.8918). The escape 

latency time in the STZ group (48.61 ± 2.056) was longer than in the control rats (36.67 ± 1.548) and the 

major difference began to emerge on day 2. (F=6.459, P<0.01). An outstanding difference was found 

between the control group (22.81 ± 1.498, 20.02 ± 1.387) and the STZ group on day 4 (F=9.438, P<0.001, 

22.81 ± 1.498 vs 39.65 ± 2.793) and on day 5 (F=3.618, P<0.05, 20.02 ± 1.387 vs 26.43 ± 2.086). There was 
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a marked decrease in the escape latency in the STZ group and STZ + DA-JC4 group (30.65 ± 3.372, 21.91 ± 

1.243). Figure 1.C shows the exploration time of the probe trial that rats spent in the target quadrant. A 

one-way ANOVA analysis showed an overall difference between groups (F=7.818, P<0.001). Contrary to 

the escape latency, rats in the STZ group (0.2800 ± 0.01630) resulted in a decrease in spatial memory 

compared to the control rats (0.4217 ± 0.01696) (P<0.001). Rats that received both STZ and DA-JC4 

(0.3920 ± 0.02713) performed better than STZ saline treated rats (P<0.01). In addition, there was no 

significant difference in swim speed among all four groups (F=1.151, P=0.3422).  

 

 

3.2 DA-JC4 reduced the levels of phosphorylated tau protein  

Overall differences between groups in the cortex and hippocampus were found via one-way ANOVA 

analysis (F=8.497, p<0.01; F=10.38, P<0.001). Fig 2. I, II show that levels of p-tau in the STZ group 

(0.2774 ± 0.02585, 0.2794 ± 0.02579) were higher compared to the control group (0.1610 ± 0.01080, 0.167 

± 0.01308) (P<0.01, P<0.01). However, the STZ + DA-JC4 group (0.1941 ± 0.01825, 0.1902 + 0.008825) 

attenuated the levels of phospho-tau compared with the control group (P<0.01, P<0.01).  

 

3.3 DA-JC4 normalized the STZ -induced increase of the chronic inflammation response  

As to the activation of astrocytes, significant differences between groups in the cortex and hippocampus 

were found (F=30.83, P<0.0001; F=9.867, P<0.01). There was an increase of GFAP-positive astrocytes in 

the STZ group (8.340 ± 0.4890, 15.32 ± 2.348) than the control group (2.808 ± 0.3406, 6.761 ± 0.2818) 

(P<0.001; P<0.01), and injection with DA-JC4 alone (2.881 ± 0.4943, 7.174 ± 0.7706) has no effect. Rats 

that received both STZ and DA-JC4 (5.010 ± 0.5244, 8.820 ± 0.7110) had reduced levels of activated 

astrocytes. See Fig. 3. 

The immunoreactivity of IBA1-positive microglia was observed in the cortex and hippocampus as shown in 

Fig. 4. I and Ⅱ. There was no difference between control group (0.8879 ± 0.04772, 1.244 ± 0.1184) and 

DA-JC4 (0.9417 ± 0.04789, 1.217 ± 0.1018) group. The activation of microglia in the STZ group (4.895 ± 

0.2610, 4.103 ± 0.4160) was significantly higher than in the control group (P<0.001, P<0.001), and DA-JC4 

administration (1.839 ± 0.2617, 2.586 ± 0.2038) decreased the number of IBA1-positive microglia compared 

to the STZ only group (P<0.001, P<0.01). See Fig. 4.                                                                                                    

 

3.4 DA-JC4 reversed the STZ-induced increase in apoptotic signalling   
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The results show that the BAX/Bcl-2 ratio did differ significantly among the four different treatment groups 

in the rat cortex and hippocampus (one-way ANOVA F=26.78, P<0.0001; F=120.1, P<0.0001). Compared 

with the controls (0.9915 ± 0.01694, 0.8145 ±0.03596), STZ administration (2.387 ± 0.2384, 2.276 ± 0.1191) 

markedly increased this ratio (P<0.001, P<0.001). In comparison, the increases in BAX/Bcl-2 ratios induced 

by STZ were reversed when treated with DA-JC4 (1.192 ± 0.06932, 0.8966 ± 0.02022). Also, injection with 

DA-JC4 alone (1.034 ± 0.1056, 0.7970 ± 0.03804) did not change the level of apoptotic signaling in the 

brain. See Fig. 5 

 

3.5 DA-JC4 promoted re-sensitization of insulin signaling in the brain  

Total protein of Akt and IRS1 did not differ significantly in any of the groups. A one-way ANOVA analysis 

showed differences between groups (p<0.001). The levels of phosphorylated Akt and IRS1 was changed by 

the treatment. As seen in Fig. 6, the western blot assay revealed that the levels of phospho-IRS1Ser1101 in the 

STZ treated group (0.04414 ± 0.001197, 0.03244 ± 0.001044) were significantly increased in both the cortex 

and the hippocampus, compared with the controls (0.03712 ± 0.001724, 0.02815 ± 0.0008825) (P<0.01, 

P<0.05). However, rats that had received both DA-JC4 and STZ (0.04034 ± 0.0006476, 0.02869 ± 

0.0009052) exhibited lower levels of phospho-IRS1Ser1101 in the brain than the STZ only rats (P<0.05, 

P<0.05).  

In contrast with the change of phospho-IRS1Ser1101, STZ treatment markedly suppressed the expression of 

phospho-AktSer473 (0.1872 ± 0.02649, 0.1540 ± 0.02694) in both the cortex and the hippocampus as 

compared to the control group (0.3356 ± 0.02061, 0.2929 ± 0.01382) (P<0.01, P<0.01). However, DA-JC4 

(0.2940 ± 0.005428, 0.2114 ± 0.01248) moderately attenuated the STZ-induced inactivation of 

phospho-AktSer473 (P<0.05, P<0.05).  

 

 

4. Discussion 

In the present study, we investigated the effect of the novel GLP-1/GIP dual receptor agonist DA-JC4 for the 

first time in the rat model of STZ- induced cognitive impairment. ICV. administration of STZ at low dosage 

(3 mg/kg body weight) induces learning and memory deficits [21, 38-40, 43]. Consistent with previous 

findings, we found that learning and memory impairment were induced by the STZ treatment. We also found 

that DA-JC4 effectively attenuated the spatial working memory deficit induced by STZ. Consistent with 

previous findings, the phosphorylation of tau protein was enhanced by icv. administration of STZ [42]. 
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DA-JC4 treatment prevented or reversed the phosphorylation of tau. The chronic inflammation response in 

the brain is a critical element of AD progression [47, 48]. Chronic inflammation generates free radicals and 

increases the release of pro-inflammatory cytokines that are detrimental to neurons [49, 50]. Consistent with 

previous findings, the chronic inflammation response was clearly triggered by the treatment with STZ [41]. 

DA-JC4 effectively reduced the chronic inflammation response induced by STZ, and the ratio of BAX/Bcl-2 

was much improved, demonstrating that cellular apoptotic signaling had been reduced by the novel drug. In 

addition, insulin signaling as shown in IRS-1 phosphorylation levels and Akt phosphorylation furthermore 

was re-sensitized by DA-JC4. Levels of pIRS-1 were reduced and of pAkt were enhanced to normalise 

second messenger cell signalling. The novel dual agonist showed good effects in improving these key 

biomarkers of neuropathological processes. 

Insulin de-sensitization has been observed in the brains of people with AD [51-53] and we previously 

demonstrated that the GLP-1 analogue liraglutide was able to reverse this [54]. Importantly, brain insulin 

de-sensitization correlates well with cognitive decline [15, 55] and with tau protein phosphorylation levels 

[56], and the application of insulin via nasal spray showed good improvements in AD patients [57, 58].  

The chronic inflammation response in the brain plays a key role in the progression of neurodegenerative 

disorders [59], and a reduction of this process most likely also plays a part in the overall improvement of the 

pathophysiology. GLP-1 has anti-inflammatory properties [60], and we have shown previously that single 

GLP-1 or GIP receptor agonists can reduce the chronic inflammation response in the brain [16, 17, 26]. 

Novel dual GLP-1/GIP receptor agonists have the advantage of activating two signaling pathways, and have 

been shown to be superior to single GLP-1 receptor agonists [31, 61]. We previously reported that another 

dual agonists named DA-JC1 showed good neuroprotective effects in the MPTP mouse model of 

Parkinson’s disease [33, 62]. That dual agonist was not as effective as a single GLP-1 receptor agonist [63] 

and had to be injected at a higher dose (50nmol/kg ip). In this study, we used the much lower dose of 

DA-JC4 (10 nmol/kg ip) for the evaluation of the neuroprotective effects of DA-JC4 in the Alzheimer Rat 

Model induced by STZ, which compares well to the effective dose of liraglutide of 25nmol/kg ip. [26]. This 

first study shows promise that such dual agonists may be superior to single incretin analogues, but further 

dose response tests need to be conducted in order to find the most potent drug dose for this dual agonist. 

This is of importance as liraglutide has shown first neuroprotective effects in a pilot clinical study of AD 

patients. Brain activity and energy turnover was assessed by 18FDG-PET brain imaging, and after 6 months 

of treatment, brain scans revealed that there was significant deterioration in cortical activity in the placebo 

group. In contrast, the liraglutide treated group showed no deterioration at all [29]. A larger phase II trial is 
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currently ongoing (clinical trial ID NCT01843075). Furthermore, another GLP-1 receptor agonist, exendin-4, 

has shown good protective effects in a pilot study in patients with Parkinson’s disease [64]. It is therefore of 

interest to develop more efficient drugs that can activate not just GLP-1 but also the sister incretin signaling 

pathway GIP, which has shown neuroprotective effects on its own in preclinical studies of AD (Duffy and 

Holscher, 2013; Faivre and Holscher, 2013) and PD [65, 66]. Novel dual agonists therefore may be superior 

in the clinic for treating chronic neurodegenerative disorders such as AD or PD.   
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Figure captions 

    

Figure 1. DA-JC4 improved STZ-induced learning and memory impairments. A. Spontaneous alternation 

behavior was significantly decreased in the STZ group compared with the control group (compared with 

controls, *=P<0.05), and DA-JC4 treatment prevented the STZ-induced learning deficit (compared with 

STZ group, #=P < 0.05). B. Escape latency was significantly increased in the STZ group compared to the 

control group on day 2, 4, 5 (compared with control, *=P < 0.05; **=P < 0.01; ***=P<0.001), and DA-JC4 

treatment partially attenuated the impairment induced by STZ. C. STZ treatment significantly decreased the 

percent of time each rat spent in the target quadrant (P < 0.001), and DA-JC4 treatment availably prevented 

the STZ-induced memory deficit (P < 0.01). D. Swim speed did not differ between groups. E. Sample tracks 

in the probe test. 

 

Figure 2. DA-JC4 reduced the levels of phospho-tau protein in the rat cerebral cortex (Ⅰ) and hippocampus 

(Ⅱ) (A–D, scale bar = 100 μm; E-H, scale bar = 50 μm). The expression of phospho-tau was increased 

following treatment with STZ (**=P < 0.01; compared with control), and reduced by DA-JC4 (##=P < 0.01, 

compared with STZ group). 

 

Figure 3. DA-JC4 attenuated the STZ - induced the activation of astrocytes in the rat cerebral cortex (Ⅰ) 

and hippocampus (Ⅲ) (A-D, scale bar = 100 μm). Quantification of the area of GFAP positive stain in the rat 

cerebral cortex (Ⅱ) and hippocampus (Ⅳ) demonstrated that STZ injection induced astrogliosis (*** =P < 

0.001; ** = P < 0.01 compared to controls). DA-JC4 partially reversed this (### =P < 0.001; ## =P < 0.01 

compared with STZ group). 

 

Figure 4. DA-JC4 attenuated the STZ- induced activation of microglia in the rat cortex (Ⅰ) and 

hippocampus (Ⅲ) (A-D, scale bar = 100 μm). Quantification of the area of IBA-1 positive stain in the 

cerebral cortex (Ⅱ) and hippocampus (Ⅳ) revealed that STZ injection induced microgliosis (*** =P < 0.001 

compared to controls). DA-JC4 partially reversed this (### =P < 0.001; ## =P < 0.01 compared with the 

STZ group). 

 

Figure 5. DA-JC4 reduced the STZ-induced apoptotic signaling in the cortex and hippocampus. A. Western 

blot assay of BAX and Bcl-2 in response to STZ and DA-JC4. B. Western blot quantification of protein 

levels of BAX and Bcl-2. A one-way ANOVA found overall differences between groups. Post-hoc analyses 

showed differences compared to controls (***=P<0.001 compared to controls; ###-=P<0.001 compared to 

STZ group). Data are represented as mean ± SEM, and show data of 4 blotting repetitions. 

 

Figure 6. DA-JC4 re-sensitized insulin signaling in the brain. The effects of DA-JC4 on protein expression 

levels of p-Akt and p-IRS-1 in the cortex and the hippocampus as measured by western blot assay (A, C). 

Quantification of p-Akt and p-IRS-1 in the cortex and the hippocampus (B, D). A one-way ANOVA found 

overall differences for B (F= 8.020, P<0.01; F=13.69, P<0.01) and D (F= 7.724, P<0.01; F= 6.841, P<0.01). 

Post-hoc analyses showed differences compared to controls (*=P<0.05; **=P<0.01). Data are represented as 

mean ± SEM, and show data of 4 blotting repetitions. 
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