Time-phase bispectral analysis.

Jamek, Jamsek and McClintock, Peter V. E. and Stefanovska, Aneta and Khovanov, Igor A. (2003) Time-phase bispectral analysis. Physical Review E, 68 (1). 016201. ISSN 1539-3755

[thumbnail of PRE2003Bispectri.pdf]
Preview
PDF (PRE2003Bispectri.pdf)
PRE2003Bispectri.pdf - Published Version

Download (1MB)

Abstract

Bispectral analysis, a technique based on high-order statistics, is extended to encompass time dependence for the case of coupled nonlinear oscillators. It is applicable to univariate as well as to multivariate data obtained, respectively, from one or more of the oscillators. It is demonstrated for a generic model of interacting systems whose basic units are the Poincaré oscillators. Their frequency and phase relationships are explored for different coupling strengths, both with and without Gaussian noise. The distinctions between additive linear or quadratic, and parametric (frequency modulated), interactions in the presence of noise are illustrated.

Item Type:
Journal Article
Journal or Publication Title:
Physical Review E
Additional Information:
An extension of bispectral analysis to encompass time dependence for the case of coupled nonlinear oscillators. Stimulated applications of the bispectral technique to characterise heart-rate variability, renal and kidney blood flow, EEG waves, and ozone records. RAE_import_type : Journal article RAE_uoa_type : Physics
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100/3109
Subjects:
?? statistical and nonlinear physicsstatistics and probabilitycondensed matter physicsqc physics ??
ID Code:
2267
Deposited By:
Deposited On:
04 Apr 2008 08:50
Refereed?:
Yes
Published?:
Published
Last Modified:
11 Nov 2024 01:02