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Time-phase bispectral analysis
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Bispectral analysis, a technique based on high-order statistics, is extended to encompass time dependence for
the case of coupled nonlinear oscillators. It is applicable to univariate as well as to multivariate data obtained,
respectively, from one or more of the oscillators. It is demonstrated for a generic model of interacting systems
whose basic units are the Poincavscillators. Their frequency and phase relationships are explored for
different coupling strengths, both with and without Gaussian noise. The distinctions between additive linear or
quadratic, and parametrifrequency modulatedinteractions in the presence of noise are illustrated.
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[. INTRODUCTION ten results in time variability of their characteristic frequen-
cies. Frequency and phase couplings can occur temporally,
Most real systems are nonlinear and complex. In generaknd the strength of coupling between pairs of individual os-
they may be regarded as a set of interacting subsystemsillators may change with time. In studying such systems,
given their nonlinearity, the interactions can be expected tdispectral analysis for stationary signals, based on time av-

be nonlinear too. erages, is no longer sufficient. Rather, the time evolution of
The phase relationships between a pair of interacting oshe bispectral estimates is needed.
cillators can be obtained from bivariate ddi&., where the Priestley and GalQ] were probably the first to introduce

coordinate of each oscillator can be measured separdigly the time-dependent bispectrum for harmonic oscillators.
use of the methods recently developed for analysis of synMost of the subsequent work has been related to the time-
chronization, or generalized synchronization, between charequency representation and is based on high-order cumu-
otic and/or noisy systems. Not only can the interactions béants[10]. The parametric approach has been used to obtain
detected 1], but their strength and direction can also be de-approximate expressions for the evolutionary bispectrum
termined[2]. The next logical step in studying the interac- [11]. Further, Perry and Amin have proposed a recursion
tions among coupled oscillators must be to determine thenethod for estimating the time-dependent bispectfaa.
nature of the couplings: the methods developed for synchrobandawateand Giannakis have defined estimators for cyclic
nization analysis are not capable of answering this questiorand time-varying moments and cumulants of cyclostationary
Studies of higher-order spectra, or polyspectra, offer aignals[13]. Schacket al. [14] have recently introduced a
promising way forward. The approach is applicable to intertime-varying spectral method for estimating the bispectrum
acting systems quite generally, regardless of whether or naind bicoherence: the estimates are obtained by filtering in the
they are mutually synchronized. Following the pioneeringfrequency domain and then obtaining a complex time-
work of Brillinger and Rosenblatf3], increasing applica- frequency signal by inverse Fourier transform. They assume,
tions of polyspectra in a diversity of fields have appearedhowever, that the interacting oscillators are harmonic.
e.g., telecommunications, radar, sonar, speech, biomedical, Millingen et al. [15] introduced the wavelet bicoherence
geophysics, imaging systems, surface gravity waves, acouand were the first to demonstrate the use of bispectra for
tics, econometrics, seismology, nondestructive testingstudying interactions among nonlinear oscillators. They used
oceanography, plasma physics, and seismology. An extensithe method to detect periodic and chaotic interactions be-
overview can be found in Reff4]. The use of the bispectrum tween two coupled van der Pol oscillators, but without con-
as a means of investigating the presence of second-ordeentrating on time-phase relationships, in particular.
nonlinearity in interacting harmonic oscillators has been of In this paper we develop an approddi6] that introduces
particular interest during the last few yedfs-8|. time dependance to the bispectral analysis of univariate data.
Systems are usually taken to be stationary. For real syspe focus on the time-phase relationships between (wvo
tems, however, the mutual interaction among subsystems ofnore) interacting systems. As we demonstrate below, the
method enables us to detect that two or more subsystems are
interacting with each other, to quantify the strength of the
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$Electronic address: igor@chaos.ssu.runnet.ru tem of coupled nonlinear oscillators. Our principal motiva-
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tion has been to develop a technique for studying the human 1 A
cardiovascular systefil7], including the interactions among
its subsystems, and the nature of these interactions. Here,

however, we are concerned with basic principles, and in /3
demonstratingtesting the technique on a well-characterized
simple model. Application to the more challenging problem L < OT

posed by the cardiovascular system, currently in progress,
will be described in a subsequent publication.

Il. METHOD IT

A. Bispectral analysis

Bispectral analysis belongs to a group of techniques based fy/4 fg/2 k
on high-order statistic6HOS) that may be used to analyze
non-Gaussian signals, to obtain phase information, to sup- FIG. 1. The principal domain of the discrete bispectrum of a
press Gaussian noise of unknown Spectra| form, and to deteb@.nd-“mited signal can be divided into two triangular regions, the
and characterize signal nonlinearit[&. In what follows we inner triangle(IT) and the outer triangl€OT). k and| are discrete
extend bispectral analysis to extract useful features fronffequenciesfs is the sampling frequency.
nonstationary data, and we demonstrate the modified tech-
nique by application to test signals generated from coupledghus defining a vector. Its magnitudength is known as the
oscillators. biamplitude. The phase, which for the bispectrum is called
The bispectrum involves third-order statistics. Spectral esthe biphase, is determined by the angle between the vector
timation is based on the conventional Fourier type direc@ind the positive real axis.
approach, through computation of the third-order moments The bispectrum quantifies the relationships among the un-
which, in the case of third-order statistics, are equivalent tglerlying oscillatory components of the observed signals.
third-order cumulant§5,18—21. Specifically, bispectral analysis examines the relationships
The classical bispectrum estimate is obtained as an aveletween the oscillations at two basic frequendiemdl, and

age of estimated third-order momeritsimulants M:(k. 1), a harmonic component at the frequency|. This set of
g . 3 Ma(k1) three frequencies is known as a triplét,I(k+1). The

A 1 X bispectrumB(k,l), a quantity incorporating both phase and
B(k,l)= K Z M5(k,1), (1) power information, can be calculated for each triplet.
=1 A high bispectrum value at bifrequenc,() indicates

) A ) that there is at least frequency coupling within the triplet of

where the third-order moment estimas(k,1) is performed  frequenciesk, I, andk=1. Strong coupling implies that the

by a triple produc_t of discrete Fourier transforti3-Ts) at oscillatory components & and| may have a common gen-

discrete frequenciel |, andk+1: erator. Such components may synthesize a new component at
the combinatorial frequendy=1 if a quadratic nonlinearity

Mls(kJ):Xl(k)XK')Xf(k‘F|). (2) is present_
with i=1,... K segments into which the signal is divided . . .
to try to obtain statistical stability of the estimates, see the B. Time-phase bispectral analysis
Appendix. The classical bispectral method is adequate for studying

Just as the discrete power spectrum has a point of symstationary signals whose frequency content is preserved over
metry at the folding frequencf./2, the discrete bispectrum time. We now wish to encompass time dependance within
has many symmetries in the,() plane[22]. Because of the pispectral analysis. In analogy with the short-time Fou-
these, it is necessary to calculate the bispectrum only in thger transform, we accomplish this by moving a time window

nonredundant region, or principal domain, as shown in Figw(n) of length M across the signak(n), calculating the
1. The principal domain can be divided into two triangular pFT at each window position

regions in which the discrete bispectrum has different prop-
erties: the inner triangl€T) and the outer ong23]. In the _
current work it is the IT that is of primary interest. Thus, it is X(kn)= > x(mw(n—r)eizmiM, 4
sufficient to calculate the bispectrum over the IT of the prin- n=0

cipal domain defined in Ref$§5,7]: 0<I<k, k+I1<fy/2.

; : ; . Here, k is the discrete frequency, the discrete time, and
The bispectrunB(k,l) is a complex quantity, defined by . . _ ) .
magnitudeA and phasep, the time shift. The choice of window lengi¥l is a compro-

mise between achieving optimal frequency resolution and
B(k,1)=|B(k,1)|el“BkD =gl (3)  optimal detection of the time variability. The instantaneous
biphase is then calculated: from Eq2) and (3), it is
Consequently, for eaclk(l), its value can be represented as
a point in a complex space, R&(k,1)] versus ImiB(k,1)], d(k,I,n)=p(n)+ ¢ (N)— . (N). (5)

M-1
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FIG. 2. Results in the absence of noi¢a). The test signak,,(t), variablex, of the first oscillator with characteristic frequenéy
=1.1 Hz. The characteristic frequency of the second oscillatby=4d0.24 Hz. The oscillators are unidirectionally and linearly coupled with
three different coupling strengthg;=0.0(1), 0.1(2), and 0.2(3). Each coupling lasts for 400 s at sampling frequehey10 Hz. Only the
first 15 s are shown in each cagb) The power spectrum an@) synchrogram(d) The bispectrunB|, usingK=33 segments, 66%
overlapping, and the Blackman window to reduce leakage(anis contour view.

If the two frequency componentsand| are frequency and Different cases of interaction are demonstrated for signals
phase coupledp, ;= ¢+ ¢,, it holds that the biphase is 0 generated by the proposed model. In each case we analyze
(27) radians. For our purposes the phase coupling is lesthex; variable of the first oscillator, recorded as a continuous
strict because dependent frequency components can be phdiee series. For the first 400 s, the interoscillator coupling
delayed. We consider phase coupling to exist if the biphase istrength was zero. It was then raised to a small constant
constant(but not necessarily 0 radian$ for at least several value. After a further 400 s, it was increased again. The first
periods of the lowest frequency component. Simultaneously}5 s and corresponding power spectrum for each coupling
we observe the instantaneous biamplitude from which it isstrength are shown in the figures for each test signal, in order
possible to infer the relative strength of the interaction. Weto demonstrate the changes in spectral content and behavior
thus hope to be able to observe the presence and persisterzaised by the coupling. For bispectral analysis the whole
of coupling among the oscillators. signal is analyzed as a single entity, but the transients caused
by the changes in coupling strength are removed prior to
processing. First the classical bispectrum is estimated. Bifre-
quencies where peaks provide evidence of possible fre-
To illustrate the essence of the method, and to test it, wguency interactions are then further studied by the calcula-
use a generic model of interacting systems whose basic uniipn of the biphase and biamplitude as functions of time.
is the Poincarescillator: They were calculated using a window of length 100 s, moved
across the signal in 0.3 s steps.

Ill. ANALYSIS

Xi==Xiqi~ @j¥i+ Oy,
A. Linear couplings
(6) Let us start with the simplest case of a linear interaction
between coupled oscillators. We suppose mé@eo consist
of only two oscillatorsj=1,2. The parameters of the model
0i=ai(NXiTyi —a). are set tow;=1, a;=0.5 ande,,a,=1. The coupling term
is unidirectional and linear

yi= —Yidi T 0iXi + gy,

Herex andy are vectors of the oscillator state variables,

a; and w; are constants, angy,(y) andg,(x) are coupling Ox, = m2X2, Qy, = 72Y2. (7)
vectors. The activity of each subsystem is described by the

two state variableg; andy;, wherei=1, ... N denotes the The test signak,,(t) is the variablex, of the first oscillator.
subsystem. It is presented in Fig. (&) with the corresponding power

The form of the coupling terms can be adjusted to studyspectrum for three different coupling strengths: no coupling
different kinds of interaction among the subsystems, e.g.p,=0 and weak couplings;,=0.1,0.2. The peaks labeled
additive linear or quadratic, or parametric frequency moduas f;=1.1 Hz andf,=0.24 Hz are the independent har-
lation. Examples will be considered both without and with amonic components of the first and the second oscillator.
zero-mean white Gaussian noise to obtain more realistic corfhese frequencies are deliberately chosen to approximately
ditions. have a noninteger ratio. There is also at least one peak
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FIG. 3. (a) Adapted bispectrumB,|, calculated from the test signaj, using K =34 segments, 80% overlapping, and the Blackman
window and(b) its contour view. Regions of the adapted bispectrum albfigv€0.88 Hz and belowf;<0.3 Hz are cut, because the triplets
(1.1 Hz,1.1 Hz,1.1 Hrand(0.24 Hz,0.24 Hz,0.24 Hzproduce high peaks that are physically meaninglessAdapted biphase, and(d)
biamplitudeA, for bifrequency(1.1 Hz,0.24 H, using a 0.3-s time step and a 100-s-long Blackman window for estimating the DFT.

present at the harmonically related positioy=2f,—f, at-  where indexa is introduced and will be used in what follows
tributable to interaction between the two oscillators. It arisego indicate that the values are obtained using the adapted
from the nonlinearity of the first oscillator, but is caused bymethod. To obtain 0 radians in the case of phase coupling we
the forcing of the second oscillator. ~ have to correct the adapted biphase expresgpry sub-

The_prmmpal domain of the b|spectrum for the test signaltracting ¢.=2¢,— ¢¢. In the presence of a harmonically
Xia, Fig. Ad), shows one peak at the bifrequendyl Hz,  related frequency component and phase coupling, the bi-
1.1 H2, the so-called self-coupling. No other peaks arephase will then be 0 radians.
present. B_|sp§ctral analysis examines the relationships be- The adapted bispectrufiB,| for the signalx;, exhibits
tween oscnlatl_ons at the two basic frequenchsandf_z, several peaks, as shown in Fig(@3 It peaks wheref,
gnd a modulation component at th_e frgquehgz f2, which =f,; a triple product {,,f,,f3) of power at frequencie$;
is absent from the power spectra in FigbR Therefore, no _ [ _ _of e : :
peak is present at bifrequen¢y.1 Hz,0.24 Hx Thus, the =T=1, and alsof3=2f, ~ f,=T1, raises a high peak at the

: o ' e ' bifrequency €,f). The self-coupling peak is physically

method as it stands is incapable of detecting the presence eaningless, and it is therefore cut from the adapted bispec-

linear coupling between the oscillators by analysis of the Sfum. It can be used for additional checking, since it strongly

signalx; . Nonetheless, we still suggest the use of b'SpeCimplies nonlinearity[6].

tral analysis to investigate the presence of nonlinearity, but The peak of primary interest is at bifrequencyl Hz
based on an adapted way of calculating the bispectrum. 0.24 H2. There is also a high peak positioned at bifrequency

h;ggzg(ejr?rlé thi:C'Sprz?;rt%rgﬁ.thgitcgpb.?;fs?%éo If).(::?]m .67 Hz,0.24 Hylying on the line where the third frequency
P quency ! P Itrary ime. 111S tug, e triplet is equal to the frequency of the first oscillator

well suited for detecting the presence of quadratic coupling%Ind is therefore a consequence of the method. The small
and frequency modulation, since they both give rise to fre- .

quency components at the sum and difference of the in,[(al;_)eaks_present i_n the adapted bispectrum are the result of
acting frequency components numerical rounding error and leakage effects due to the DFT

. . . . ?alculation.
To be able to detect linear couplings using the bispectra The peak(1.1 Hz,0.24 Hz indicates that oscillations at
method, as proposed, it is necessary to change the frequen&y '

. > . ose pairs of frequencies are at least linearly frequency
relation. Study of coupled Poincamscillators demonstrate coupled. Frequency coupling alone is sufficient for a peak in

the presence of_a co_mpone_nt at frequenky-2 as a conse- the bispectrum to occur. Although the situation can in prin-
quence of nor)Imearlty. This component was detected .nu(:iple arise by coincidence, frequency and phase coupling to-
merlcall_y , and is not nze_cgssanly charactenstm_of .aII nonlln'gether strongly imply the existence of nonlinearities. To be
ear oscillators. By modifying the bispectral definition to able to distinguish between different possible couplings, we
calculate the adapted biphase Fig¢c)3

Ba(k,1) =E[X(K)X(1)X*(2k—1)], (8) During the first 400 s of test signal 5, where no cou-
pling is present, the adapted biphase changes continuously
between 0 and 2 radians. For the same time of observation
it can be seen that the adapted biamplitude is 0, Fid). 3
During the second and third 400 s of the sigrgl, a con-
da(K) =+ d— o1 — des 9) stant adapted biphase can be observed indicating the pres-

the biphase turns into
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FIG. 4. Results in the presence of additive Gaussian n@elest signalx,g, variablex, of the first oscillator with characteristic
frequencyf,=1.1 Hz. The characteristic frequency of the second oscillatby=0.24 Hz. The oscillators are unidirectionally and linearly
coupled with three different coupling strengthg;=0.0 (1), 0.1 (2), and 0.2(3). Each coupling lasts for 400 s at a sampling frequency

=10 Hz. Only first 15 s are shown in each cad®. Its power spectrum an¢t) synchrogram(d) Adapted bispectruniB,| using K
=33 segments, 66% overlapping, and the Blackman window(@nits contour view. The parts of th&,| abovef,>0.79 Hz and below
f1<<0.3 Hz are omitted because the triplétsl Hz,1.1 Hz,1.1 Hrzand(0.24 Hz,0.24 Hz,0.24 Hzproduce a high peak that is physically
meaningless(f) Adapted biphaseb, and (g) adapted biamplitudé\, for bifrequency(1.1 Hz,0.24 Hz, using a 0.3-s time step and a
100-s-long window for estimating the DFT using the Blackman window.

ence of linear coupling. The value of the adapted biamplitude The instantaneous phases can also be used to calculate the
is higher in the case of stronger coupling. The coupling condirection and strength of coupling, using the methods re-
stantz, can be obtained by normalization, and we are thusently introduced by Schreiber, Rosenbletal., and Palus
able to define the relative strengths of different couplings. et al.[2].
When the oscillators are coupled bidirectionally the fre-
guency content of each of them changes and componénts 2
and X, are generated. Both of these characteristic frequen- o
cies can be observed in the time series of each oscillator. We now test the method for the case where noise is added
Two combinatorial components are also present in their sped0© the variablex; of the first oscillator:
tra, 2f,—f, andf,—2f,, assuming that,>f,. In analyz- )
ing bidirectional coupling, the procedure described above Xy == X101~ @1y1+ Gy HE(D),
can be extended and two combinatorial components should (10)
be analyzed in the same way. -
Making use of the calculated instantaneous phases of both V1= Vit 01Xa+ gy,
oscillatory components we also construct a synchrogram
[Fig. 2(c)], as proposed by Scfa et al. (see Ref[1] and the Here £(t) is zero-mean white Gaussian noigé(t))=0,
references therejpand can immediately establish whether or (£(t),£(0))=D §(t), andD =0.08 is the noise intensity. In
not the coupling also results in synchronization. this way we obtain a test signajg(t), Fig. 4a).

B. Linear couplings in the presence of noise
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FIG. 5. Bispectrum|/B|, calculated from the signat;g presented in Fig. @), using K=33 segments, 66% overlapping, and the
Blackman window to reduce leakage afil its contour view(c) Biphase¢ and(d) biamplitudeA for bifrequency(1.1 Hz,0.24 Hz, using
a 0.3-s time step and a 100-s-long window for estimating the DFTs using a Blackman wiell®hase difference betweeng, of the
characteristic frequency compondntof the first oscillator andb, of the characteristic frequency componénbf the second oscillator, for
time step 1f and(f) at each period of lowest frequencyf1/in the bifrequency paif1.1 Hz,0.24 Hg, using interpolation and 100-s-long
window for estimating DFTs using the Blackman window.

For nonzero coupling strength,, the component at fre- peak is not of interest to us. It can easily be checked whether
qguency positionf; can still be seen in the power spectrum, a phase coupling exists among the bifrequencies from the
despite the noise, Fig.(d). The adapted biphad€&ig. 4(f)]  time evolution of the biphase.
can clearly distinguish between the presence and absence of In general, besides estimating bispectral values, one can
coupling. When coupling is weaker, the adapted biamplitudelso observe the time dependences of the phase and ampli-
[Fig. 3(g)] is lower and the adapted biphase is less constantude for each frequency component and their phase relation-

The bispectrum for the signad;g, shown in Fig. %a), ships. This applies particularly to frequencies that form a
differs from that in the case of zero noise, Figd2 Noise  bifrequency giving a high peak in the bispectrum or adapted
raises two additional peaks positioned(atl Hz,0.24 Hx  bispectrum. Synchrograms, FiggcPand 4c), are obtained
and (0.86 Hz,0.24 Hr The former could be the result of by first calculating the instantaneous phase of each oscillator
interaction; the latter is due to the method: the sum of theand then their phase differenEg]. The phase difference in
frequencies in this bifrequency pair gives the frequency othis case is between two fixed frequencies. We do not calcu-
the first oscillator. late their instantaneous frequencies, although it is possible to

Close inspection of thé0.24 Hz,1.1 Hx peak by calcula- follow the frequency variation by calculating the phase dif-
tion of the biphase gives Fig(&. When coupling is present, ference at neighboring bifrequencies around the observed
the characteristic frequency of the second oscillator appeaigne and showing them simultaneously on the same plot. Ex-
in the power spectrurfiFig. 4(b)]. Two frequencies of high amples of the phase differenag=¢,— ¢, between the
amplitude result in a small peak even if no harmonics argphases of the firs$; and the secon@, interacting oscilla-
present at the sum and/or difference frequencies. The secomars are shown in Figs.(8) and 5f).
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FIG. 6. Results for quadratic coupling in the absence of n¢@d.he test signak,c, variablex, of the first oscillator with characteristic
frequencyf,=1.1 Hz. The characteristic frequency of the second oscillatby=90.24 Hz. Oscillators are unidirectionally and quadratically
coupled with three different coupling strengthg:=0.0 (1), 0.05(2), and 0.1(3). Each coupling lasts for 400 s at sampling frequefgy
=10 Hz. Only the first 15 s are shown in each ca&®.The power spectrum(c) The bispectrumB|, using K=33 segments, 66%
overlapping, and the Blackman window to reduce leakage(dnds contour view. The part of the bispectrum abdye-1.0 Hz is cut,
because tripletl.1 Hz,1.1 Hz,1.1 Hgproduces a high peak that is not physically significant.

C. Quadratic couplings from the triplet(0.62 Hz,0.48 Hz,1.1 Hzthe sum-difference
We now assume that two Poincarscillators can interact cOmbination of such frequencies always give the character-

with each other nonlinearly. A quadratic nonlinear interaction'Stic frequency, or one that results from quadratic coupling.

generates higher harmonic components in addition to thd € existence of such peaks has no other meaning than as a
characteristic frequencid$]. In order to study an example strong indicator of second-order nonlinearity. Consequently,

where the firstf;=1.1 Hz and second,=0.24 Hz oscilla- the biphase for all peaks due to possible nonlinear mecha-
tors are quadratically coupled, we change the coupling term@iSMS in the bispectrum must have the same value, and same
in model (6) to quadratic ones behavior, as shown, e.g., in Figga¥and 7c). The biphase
is constant in the presence of quadratic coupling. From the

Ox, = 72(X1=X2)% Oy, = ma(y1—Y2)% (11)  biamplitude, the coupling constant can be determined by nor-
! ' malization.

In the power spectrum there is a component at frequency
: : ; _ 2f,—f,, even although linear coupling is absent. It arises
ff I h I =0 (1 12 = N = .
different coupling strengthgno coupling 7,=0 (1) and from nonlinearity in the Poincarescillator. The adapted

weak couplingsy,=0.05(2), 7,=0.1(3)] has a richer har- bispectrum for the signat;c shows a peak at bifrequency

monic structure. In addition to the characteristic frequencies . . .
it contains components with frequencie§,2 2f,, f,+f., (1.1 Hz,0.24 Hg but the adapted biphase varies continu-

andf,—f, [Fig. 6(b)]. Equation(11) also indicates that, as ously: we may therefore exclude the possibility of linear cou-

well as having a particular harmonic structure, the compopllng being present.
nents of the signalx,c also have related phases,
2¢1,2¢5,¢1+ ¢p2, andd;— ¢,

We expect several peak&4] to arise in the bispectrum.  As in the case of linear couplingSec. 1B we add a
Lh)e Kef?)k ;)f priphCipmhintereSl_t is at bli(frqu;rédﬁ |_1|ZiOH224 noise term to the quadratic coupling, and obtain the test

Z). AS DETOrE, e Sefi-coupling peaxs ar Z, L. signalx,p, presented in Fig. @).

{ahndt()(.).24 I-t|z,0.21(;-|d);?re cif ho ||:1terest, SO tthtehy at;ﬁ: cut fro”? Using the bispectral and adapted bispectral methods, we
€ bispectrum. tional peaks appear at the biltequencCi&g, yhat we obtain results very similar to those in the ab-
(0.86 Hz,0.24 Hy, (0.62 Hz,0.48 Hy, (0.86 Hz,0.48 Hy. f noi The method is evidently noise robust. The

(1.1 Hz,0.48 Hz, (1.1 Hz,0.86 Hx, and(1.34 Hz,0.86 HE oo O Noise. . ey '

; . results for nonzero coupling are quite different from those
The triplet of harmonically related frequency c:omponentsWhere coupling is absent, Fig(e3
(f1,f5,f3) would peak in the bispectrum when the power for ' '
all these frequencies differs from zero. The components 0.48
Hz,0.86 Hz,1.34 Hz, and 2.2 Hz resulting from quadratic
couplings form such triplets that peak in the bispectrum: We are also interested of being able to detect parametric
(0.86 Hz,0.24 Hz,1.1 Hz (0.86 Hz,0.48 Hz, 1.34 Hzand frequency modulation and to distinguish it from quadratic
(1.34 Hz,0.86 Hz,2.2 Hz Besides these, there are also othercoupling. Parametric modulation produces frequency compo-
peaks, e.g., that at the bifrequen€y62 Hz, 0.48 Hzarising nents at the sum and difference of the characteristic fre-

Clearly, the test signat,c presented in Fig. @ for three

D. Quadratic couplings in the presence of noise

E. Frequency modulation in the presence of noise
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FIG. 7. (a) The biphasep and (b) biamplitudeA for the test signak,c for bifrequency(1.1 Hz,0.24 H, using 0.3-s time step and
100-s-long window for estimating DFT using the Blackman wind@yBiphase andd) biamplitude for the bifrequenc{0.86 Hz,0.24 Hg,
with a 0.3-s time step and a 100-s-long window for estimating DFT using the Blackman window.

guency and the modulation frequency, i.e., the same two freabsence of couplings and modulation, but in the presence of
guency components that can also result from quadratiooise, there would be no such peaks in the power spectrum
coupling. Let us now consider an example where the firsor bispectrum.

oscillatorf,;=1.1 Hz is frequency modulated by the second
one f,=0.24 Hz. For this purpose the equations of the first

. IV. SUMMARY AND CONCLUSIONS
oscillator become

. We have extended the bispectral method to encompass
X1= = X101~ Y1(@1+ ppXp) +&(1), time dependence and have demonstrated the potential of the
(12 extended technique to determine the type of coupling among
_ interacting nonlinear oscillators. Time-phase couplings can
V1= = Y101+ X(@01+ 7mY2)- be observed by calculating the bispectrum and adapted
bispectrum and by obtaining the time-dependent biphase and
biamplitude. The method has the advantage that it allows an
The model parameters, ,, a;, and the noise intensit)  arbitrary number of interacting oscillatory processes to be
are chosen to be the same as in the previous examples. studied.
We thus obtain a test signajg . It is the time evolution Recently introduced methods for synchronization analysis
of the variablex, of the first oscillator, presented in Figid  among chaotic and noisy oscillatiofsee Ref[1] and refer-
with the corresponding power spectruitbpfor three differ-  ences thereinhave stimulated applications to a variety of
ent parametric frequency modulation strengths: no moduladifferent systems. Methods for quantifying the strength and
tion #,=0; and modulation,,=0.1,0.2. The bispectrum of identifying the direction of couplings, based on nonlinear
the test signak,g, Fig. 9c), exhibits several high peaks. dynamic or information theory approaches, have recently
The highest are at bifrequenciés1 Hz,0.86 Hz, (0.86 Hz,  been propose{l]. Here we have addressed the question of
0.24 Hz, and (1.1 Hz,0.24 Hy, in addition to the(1.1 Hz, the type of coupling that may result in synchronization, and
1.1 H2 peak. They also appear in the case of quadratic coune have proposed a method for its analysis. It is applicable
pling. In general, however, the other peaks that appear folo both univariate datda single signal from the coupled
quadratic coupling are absent. The reason is that although tlsystem) or multivariate data(a separate signal from each
component of the second oscillatigr (one component of the  oscillatop.
triplet) is not present in the power spectrum, its value is not Millingen et al. [15] have analyzed multivariate data us-
not exactly zero. ing a combined wavelet and bispectral method, and have
Observing the biphase, no epochs of constant biphase caliscussed its application in the field of chaos analysis. Here
be observed, although for strong frequency modulation theve have concentrated on univariate data and illustrated the
biphase is less variable. In the power spectrum, Fig., %i0  potential of the time-phase bispectral method for the detec-
component rises above the noise level at frequdncyfthe  tion of higher-order couplings in the presence of noise. The
bifrequency pair, where the bispectrum peaks. This is an inpossibility of using univariate data is of particular impor-
dication that there is parametric coupling between the osciltance when dealing with real signals, as in practice we often
lators, as there is a high value of biamplitude. The biphaseannot observe and measure the separate subsystems directly,
changes runs between 0 andr,2and is modulated in the but only their combination, which is intrinsically difficult.
absence of noise. There are also no rapidpghase slips of Most of the methods proposed so far for synchronization
the kind that are normal if no modulation is present. In theanalysis and detection of the direction of couplings are based
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FIG. 8. Results for quadratic couplings in the presence of additive Gaussian (®@iée test signak,p, variablex, of the first
oscillator with characteristic frequendy=1.1 Hz. The characteristic frequency of the second oscillatby=s0.24 Hz. The oscillators are
unidirectionally and quadratically coupled with three different coupling strenghs:0.0 (1), 0.05(2), and 0.1(3). Each coupling lasts for
400 s at a sampling frequendy=10 Hz. Only the first 15 s are shown in each cafg.The power spectrum(c) The bispectruniB|
calculated withK =33 segments, 66% overlapping, and using the Blackman window to reduce leakagk ismdontour view. The part of
the bispectrum abovg,>1.0 Hz is cut, because the triplet.1 Hz,1.1 Hz,1.1 Heproduce a high peak that is physically meaninglésks.
The biphasep and(f) biamplitudeA for bifrequency(1.1 Hz,0.24 Hx, with a 0.3-s time step and a 100-s-long window for estimating DFTs
using the Blackman window.

on bivariate or multivariate datdl,2]. In conjunction with  cies. We have shown the method to be suitable for the
frequency or time-frequency filterin27] or mode decom- analysis of noisy signals.
position[28] to obtain two or more “separate” signals, these  Although we have shown that the technique works effec-
methods can be used for univariate data as well. Synchrontively on a well-characterized simple model, there will be
zation can also be detected in univariate data through asome difficulties to be faced and overcome in applying it to
analysis of angles and rad29] in return time map$30]. real problems, e.g., to data from the cardiovascular system.
The time-phase bispectral method proposed in this papddnderstanding the content of the bispectrum and identifica-
is not only applicable to the synchronization analysis oftion of the peaks of interest are not always straightforward.
univariate data but also, at the same time, allows one tdo appreciate which peaks are those to focus on, one has to
determine the nature of the couplings among the interactinge aware of the basic properties of the system and its funda-
nonlinear oscillators. Its benefits inclu@® the possibility of mental frequencies. Distinguishing a quadratic interaction
observing the whole frequency domain simultaneou&?y; from parametric frequency modulation may be easy when
detecting that two or more subsystems are interacting witlthe coupling(modulation is relatively strong, but becomes
each other{3) quantification of the strength of the interac- more difficult in the case of relatively weak couplifgodu-
tion; and(4) determination of whether the coupling is addi- lation). In the latter case, observing each phase in the triplet
tive linear or quadratic, or parametric in one of the frequen-separately can be helpful. Also it is not always an easy task
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FIG. 9. Results for parametric frequency modulation in the presence of additive Gaussianadibe. test signak,g, of variablex;
of the first oscillator with characteristic frequenty=1.1 Hz frequency modulated by the second oscill&ter 0.24 Hz with three different
frequency modulation strengthsg;,,,=0.0 (1), 0.1 (2), and 0.2(3). Each frequency modulation lasts for 400 s, at sampling frequépcy
=10 Hz. Only the first 15 s are shown in each cdbpThe power spectrunic) The bispectruniB| calculated withk =33 segments, 66%
overlapping, and using the Blackman window to reduce leakagédiiis contour view. The part of the bispectrum abdye 1.0 Hz is cut,
because the tripldl.1 Hz,1.1 Hz,2.2 Heproduces a high peak that is physically meaningléssThe biphasep and(f) biamplitudeA for
bifrequency(1.1 Hz,0.24 Hg, with a 0.3-s time step and a 100-s-long window for estimating the DFTs using the Blackman window.

to distinguish between quadratic interaction and parametrigvithin a relatively narrow frequency interval. A STFT was
frequency modulation in the cases when both of them occutherefore sufficient for good time and pha$equency lo-
simultaneously. Further, where the possible basic frequencieglization. With a broader frequency content, however, the
are relatively close, it will be hard to detect them separatelywavelet transform or selective Fourier transform will need to
This could cause particular problems in the detection of quabe applied.

dratic phase couplings where frequency pairs are close to- Higher-order spectral methods can be used to study arbi-
gether. Although it is possible in principle to study an arbi- trary interactions among coupled oscillators: of quadratic,
trary number of interacting oscillators, it is advisable inCubic, or even higher order. In this paper we have concen-

practice to study them in pairs: a knowledge of the basicfbr.ated on the lowest one, using the third-order spectrum or
frequency of each is necessary. ispectrum. For higher orders the volume of the calculations

The time-dependent biphase-biamplitude estimate was egi_ses §ubstantially, _and the method pecomes ngmerically in-
timated with a short-time Fourier transforf8TFT), using a creasingly demanding. At the same time, graphical presenta-

window of constant length. The optimal window length de_t?on and interpretation of the results become increasingly dif-
pends, however, on the frequency being studied. The effediCUlt

tlvg length of th.e window used for each frequency can .be ACKNOWLEDGMENTS

varied by applying the wavelet transform, or the selective

Fourier transform. For demonstration purposes above, the We gratefully acknowledge valuable comments and dis-
natural frequencies of the oscillators were chosen to liecussions with Andriy Bandrivskyy, Justin Fackrell, Mounir
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Sciences Research Countil K.). in which case the variance will be

APPENDIX: VARIANCE OF THE BISPECTRUM . . , A ,
ESTIMATE var(B)=E[|B(k,1)[*]—E[B(k,)]

In order to interpret bispectral values from a finite length
time series, the statistics of bispectrum estimates must be
known. To achieve statistical stability, the time series is di-
vided into K segments for averagin@5]. When there is a o . ) i
large number of segments, the estimate gains statistical sthlote that it is a consistent estimate in the sense that the
bility at the expense of power spectral and bispectral resoluv@riance approaches zero Ksbecomes infinite. The vari-
tion. For a real signal, with a finite number of points, the@nce is proportional to the product of the powgR(k)
compromise between bispectral resolution and statistical sta= E[X(K)X* (k)]] at the frequenciek, I, andk+I. Conse-
bility may be expected & around 30. Estimates are subject quently, a larger statistical variability is introduced in esti-
to statistical error, such as bias and variance. An estimat@ating larger values in the bispectrum. Finally, the variance
must be consistent, that is the statistical error must approadk proportional td 1—b?(k,1)], where the bicoherendg is
zero in the mean-square sense as the number of realizatiogs  normalized bispectrum, b?(k,1)=E[B(k,1)]%/

becomes infinite. Here we neglect the effects of finite timg p(k)P(1)P(k+1)]. That is, when the oscillations & I,
series length, we assume that they are sufficiently long. Ledndk+1 are nonlinearly coupledbf~1), the variance ap-
us consider the bias and the variance of the bispectrum esfiroaches zero, and when the components are statistically in-
mateB(Kk,l). The expected value d@&(k,l) will be dependentl§?~0), the variance is proportional to the power
at each spectral compondr26].
A . Brilinger and Rosenblatt[3] have investigated the
E[B(k’l)]zK Z’l E[Xi(k)Xi(DX(1,k)] asymptotic mean and variance of Fourier-type estimates of
high-order spectra and proved that under certain assumptions
=E[X(K)X(HX*(1,k)]=B(k,I), (A1) the kth order spectral estimate is asymptotically unbiased
o ) ) and Gaussianly distributed and that estimates of different or-
as K becomes infinite X; is the DFT of theith segment.  ger gre asymptotically independent. The variances of the real
Thus,B(k,l) can be taken as an unbiased estij@®. Its  and imaginary parts of the bispectrum are asymptotically

variance will be (i.e., for largeK) Gaussian and are equal, {&g B(k,I)]}

R . o =var{Im[B(k,!)]}. For a perfect phase-coupled triplet, the
vanB)=E[BB* |- E[B]E[B*] variances of the real and imaginary parts are equal to zero. In
the case of no coupling, there is an identical contribution to
— i{E[IX(k)IZIX(I)|2|X(k+l)|2]—E|B(k,|)|2}. the variances_ from the real and imaginary parts of the esti-
K mate of the bispectrum.
(A2) The total variance is a sum of individual=1, ... K)
contributions, because different triplets are mutually statisti-
Note that the variance is inversely proportionakioFrom a  cally uncorrelated in the absence of phase coupling. Partial
mathematical statistics point of view, it is a nontrivial task to coupling can be expected to result in a combination of per-
compute the quantity in the bracket in terms of low orderfectly phase-coupled oscillations and oscillations with ran-
spectra, but one may write a good approximafiaél, domly changing phases.

~ %P(k)P(I)P(k-i—l)[l—bz(k,l)]- (A4)

K

[1] A.S. Pikovsky, M.G. Rosenblum, and J. Kurtl®/nchroniza- [4] A. Swami, G.B. Giannakis, and G. Zhou, Signal Proc&€s.

tion; A Universal Concept in Nonlinear Scienc@ambridge 65 (1997.

University Press, Cambridge, 2001 [5] C.L. Nikias and A.P. Petropultdigher-Order Spectra Anlysis:
[2] T. Schreiber, Phys. Rev. Le85, 461(2000; M.G. Rosenblum A Nonlinear Signal Processing FrameworPrentice-Hall,

and A.S. Pikovsky, Phys. Rev. B4, 045202 (2001; M.G. Englewood Cliffs, 1998

Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. [6] G. Zhou and G.B. Giannakis, IEEE Trans. Signal Proc43s.

Mrowka, ibid. 65, 041909(2002; M. Palus V. Komarek, Z. 1173(1995.

Hrndif, and K. Sébrova ibid. 63, 046211(2007). [7] J.W.A. Fackrell, Ph.D. thesis, University of Edinburgh, 1996
[3] D.R. Brillinger and M. RosenblatSpectral Analysis of Time (unpublisheg

Series(Wiley, New York, 1967. [8] Y.C. Kim, J.M. Beall, E.J. Powers, and R.W. Miksad, Phys.

016201-11



JAMSEK et al. PHYSICAL REVIEW E 68, 016201 (2003

Fluids 23, 258 (1980; M.R. Raghuveer, IEEE Trans. Autom. [21] C.L. Nikias and J.M. Mendel, IEEE Signal Process. MadL0
Control 35, 48 (1990; H. Parthasarathy, S. Prasad, and S.D. (1993.
Joshi, IEEE Trans. S|gna| Proceds, 2346(1995 [22] L.A. Pflug, G.E. |0L|p, and J.W. |0Up, J. Acoust. Soc. A,
[9] M.B. Priestley and M.M. GabiMultivariate Analysis: Future 2159(1993; 95, 2762(1994.
Directions (North-Holland, Amsterdam, 1993 [23] M.J. Hinch, IEEE Trans. Acoust., Speech, Signal Proc&&s.
[10] J.R. Fonollosa and C.L. Nikias, IEEE Trans. Signal Process. 1277 (1990; |. Sharfer and H. Messer, IEEE Trans. Signal

) , L Process41, 296 (1993; M.J. Hinch,ibid. 43, 2130(1995.
41, 245 (1993; B. Boashash and P.J. O'Shefaid. 42, 216 [24] Three and not four, because the triplét (f,,f,+f,) has the

(1994 ) same peak in the bispectrum as the triplt, €,,f1—f,).
[11] T.S. Rao and K.C. Indukumar, J. Franklin In38, 425(1996. [25] The phases are random variables o\@27). The phases of
[12] R.J. Perry and M.G. Amin, IEEE Trans. Signal Procet. different segments are independent of each other.
1017(1995. [26] Y.C. Kin and E.J. Powers, IEEE Trans. Plasma $8:7, 120
[13] A.V. Dandawateand G.B. Giannakis, IEEE Trans. Inf. Theory (1979; V. Chandran, Ph.D. thesis, Washington State Univer-
41, 216 (1995. sity, 1990; V. Chandran and S.L. Elgar, IEEE Trans. Signal
[14] B. Schacket al, Clin. Neurophysiol112, 1388(2001). Process19, 2640(1991.

[15] B.Ph. van Milligen, C. Hidalgo, and E. Sehez, Phys. Rev. [27] P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J.

Lett. 74, 395(1995; B.Ph. van Milligenet al, Phys. Plasmas Volkmann, A. Schnitzler, and H.-J. Freunc_ii Phys. Rev. Lett.
2 3017(1995. 81, 3291(1998; A. Stefanovska and M. Haz, Prog. Theor.

. . . . - Phys. Suppl139 270(2000.
[16] J. Jamsk, M.Sc. thesis, University of Ljubljana, 2000. [26] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q.

[17] A. Stefanovska and M. Brag Contemp. Phys40, 31 (1999. Zheng, N. Yen, C.C. Tung, and H.H. Liu, Proc. R. Soc. Lon-

[18] J.M. Mendel, Proc. IEEE9, 278 (199). don, Ser. A454, 903 (1999.

[19] AK. Nadi, IEE Proc. F, Commun. Radar Signal Procégi)  [29] N.B. Janson, A.G. Balanov, V.S. Anishchenko, and P.V.E. Mc-
380 (1993. Clintock, Phys. Rev. B55, 036211(2002.

[20] A.K. Nadi, Higher-Order Statistics in Signal Processing [30] K. Suder, F.R. Drepper, M. Schiek, and H.H. Abel, Am. J.
(Cambridge University Press, Cambridge, 1998 Physiol. Heart Circ. PhysioR75 H1092(1998.

016201-12



