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Time-phase bispectral analysis
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Bispectral analysis, a technique based on high-order statistics, is extended to encompass time dependence for
the case of coupled nonlinear oscillators. It is applicable to univariate as well as to multivariate data obtained,
respectively, from one or more of the oscillators. It is demonstrated for a generic model of interacting systems
whose basic units are the Poincare´ oscillators. Their frequency and phase relationships are explored for
different coupling strengths, both with and without Gaussian noise. The distinctions between additive linear or
quadratic, and parametric~frequency modulated!, interactions in the presence of noise are illustrated.
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I. INTRODUCTION

Most real systems are nonlinear and complex. In gene
they may be regarded as a set of interacting subsyste
given their nonlinearity, the interactions can be expected
be nonlinear too.

The phase relationships between a pair of interacting
cillators can be obtained from bivariate data~i.e., where the
coordinate of each oscillator can be measured separately! by
use of the methods recently developed for analysis of s
chronization, or generalized synchronization, between c
otic and/or noisy systems. Not only can the interactions
detected@1#, but their strength and direction can also be d
termined@2#. The next logical step in studying the intera
tions among coupled oscillators must be to determine
nature of the couplings: the methods developed for sync
nization analysis are not capable of answering this quest

Studies of higher-order spectra, or polyspectra, offe
promising way forward. The approach is applicable to int
acting systems quite generally, regardless of whether or
they are mutually synchronized. Following the pioneeri
work of Brillinger and Rosenblatt@3#, increasing applica-
tions of polyspectra in a diversity of fields have appear
e.g., telecommunications, radar, sonar, speech, biomed
geophysics, imaging systems, surface gravity waves, ac
tics, econometrics, seismology, nondestructive test
oceanography, plasma physics, and seismology. An exten
overview can be found in Ref.@4#. The use of the bispectrum
as a means of investigating the presence of second-o
nonlinearity in interacting harmonic oscillators has been
particular interest during the last few years@5–8#.

Systems are usually taken to be stationary. For real
tems, however, the mutual interaction among subsystems
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ten results in time variability of their characteristic freque
cies. Frequency and phase couplings can occur tempor
and the strength of coupling between pairs of individual
cillators may change with time. In studying such system
bispectral analysis for stationary signals, based on time
erages, is no longer sufficient. Rather, the time evolution
the bispectral estimates is needed.

Priestley and Gabr@9# were probably the first to introduc
the time-dependent bispectrum for harmonic oscillato
Most of the subsequent work has been related to the ti
frequency representation and is based on high-order cu
lants @10#. The parametric approach has been used to ob
approximate expressions for the evolutionary bispectr
@11#. Further, Perry and Amin have proposed a recurs
method for estimating the time-dependent bispectrum@12#.
Dandawate´ and Giannakis have defined estimators for cyc
and time-varying moments and cumulants of cyclostation
signals@13#. Schacket al. @14# have recently introduced a
time-varying spectral method for estimating the bispectr
and bicoherence: the estimates are obtained by filtering in
frequency domain and then obtaining a complex tim
frequency signal by inverse Fourier transform. They assu
however, that the interacting oscillators are harmonic.

Millingen et al. @15# introduced the wavelet bicoherenc
and were the first to demonstrate the use of bispectra
studying interactions among nonlinear oscillators. They u
the method to detect periodic and chaotic interactions
tween two coupled van der Pol oscillators, but without co
centrating on time-phase relationships, in particular.

In this paper we develop an approach@16# that introduces
time dependance to the bispectral analysis of univariate d
We focus on the time-phase relationships between two~or
more! interacting systems. As we demonstrate below,
method enables us to detect that two or more subsystem
interacting with each other, to quantify the strength of t
interaction, and to determine its nature, whether additive
ear or quadratic, or parametric in one of the frequencies
yields results that are applicable quite generally to any s
tem of coupled nonlinear oscillators. Our principal motiv
©2003 The American Physical Society01-1
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JAMŠEK et al. PHYSICAL REVIEW E 68, 016201 ~2003!
tion has been to develop a technique for studying the hum
cardiovascular system@17#, including the interactions amon
its subsystems, and the nature of these interactions. H
however, we are concerned with basic principles, and
demonstrating~testing! the technique on a well-characterize
simple model. Application to the more challenging proble
posed by the cardiovascular system, currently in progr
will be described in a subsequent publication.

II. METHOD

A. Bispectral analysis

Bispectral analysis belongs to a group of techniques ba
on high-order statistics~HOS! that may be used to analyz
non-Gaussian signals, to obtain phase information, to s
press Gaussian noise of unknown spectral form, and to de
and characterize signal nonlinearities@5#. In what follows we
extend bispectral analysis to extract useful features fr
nonstationary data, and we demonstrate the modified t
nique by application to test signals generated from coup
oscillators.

The bispectrum involves third-order statistics. Spectral
timation is based on the conventional Fourier type dir
approach, through computation of the third-order mome
which, in the case of third-order statistics, are equivalen
third-order cumulants@5,18–21#.

The classical bispectrum estimate is obtained as an a
age of estimated third-order moments~cumulants! M̂3

i (k,l ),

B̂~k,l !5
1

K (
i 51

K

M̂3
i ~k,l !, ~1!

where the third-order moment estimateM̂3
i (k,l ) is performed

by a triple product of discrete Fourier transforms~DFTs! at
discrete frequenciesk, l, andk1 l :

M̂3
i ~k,l !5Xi~k!Xi~ l !Xi* ~k1 l !, ~2!

with i 51, . . . ,K segments into which the signal is divide
to try to obtain statistical stability of the estimates, see
Appendix.

Just as the discrete power spectrum has a point of s
metry at the folding frequencyf s/2, the discrete bispectrum
has many symmetries in the (k,l ) plane @22#. Because of
these, it is necessary to calculate the bispectrum only in
nonredundant region, or principal domain, as shown in F
1. The principal domain can be divided into two triangu
regions in which the discrete bispectrum has different pr
erties: the inner triangle~IT! and the outer one@23#. In the
current work it is the IT that is of primary interest. Thus, it
sufficient to calculate the bispectrum over the IT of the pr
cipal domain defined in Refs.@5,7#: 0< l<k, k1 l< f s/2.

The bispectrumB(k,l ) is a complex quantity, defined b
magnitudeA and phasef,

B~k,l !5uB~k,l !uej /B(k,l )5Aej f. ~3!

Consequently, for each (k,l ), its value can be represented
a point in a complex space, Re@B(k,l )# versus Im@B(k,l )#,
01620
n

re,
n

s,

ed

p-
ct

m
h-
d

s-
t

ts
o

er-

e

-

e
.

r
-

-

thus defining a vector. Its magnitude~length! is known as the
biamplitude. The phase, which for the bispectrum is cal
the biphase, is determined by the angle between the ve
and the positive real axis.

The bispectrum quantifies the relationships among the
derlying oscillatory components of the observed signa
Specifically, bispectral analysis examines the relationsh
between the oscillations at two basic frequencies,k andl, and
a harmonic component at the frequencyk1 l . This set of
three frequencies is known as a triplet (k,l ,k1 l ). The
bispectrumB(k,l ), a quantity incorporating both phase an
power information, can be calculated for each triplet.

A high bispectrum value at bifrequency (k,l ) indicates
that there is at least frequency coupling within the triplet
frequenciesk, l, andk6 l . Strong coupling implies that the
oscillatory components atk and l may have a common gen
erator. Such components may synthesize a new compone
the combinatorial frequencyk6 l if a quadratic nonlinearity
is present.

B. Time-phase bispectral analysis

The classical bispectral method is adequate for study
stationary signals whose frequency content is preserved
time. We now wish to encompass time dependance wit
the bispectral analysis. In analogy with the short-time Fo
rier transform, we accomplish this by moving a time windo
w(n) of length M across the signalx(n), calculating the
DFT at each window position

X~k,n!>
1

M (
n50

M21

x~n!w~n2t!e2 j 2pnk/M. ~4!

Here,k is the discrete frequency,n the discrete time, andt
the time shift. The choice of window lengthM is a compro-
mise between achieving optimal frequency resolution a
optimal detection of the time variability. The instantaneo
biphase is then calculated: from Eqs.~2! and ~3!, it is

f~k,l ,n!5fk~n!1f l~n!2fk1 l~n!. ~5!

FIG. 1. The principal domain of the discrete bispectrum o
band-limited signal can be divided into two triangular regions,
inner triangle~IT! and the outer triangle~OT!. k and l are discrete
frequencies,f S is the sampling frequency.
1-2
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FIG. 2. Results in the absence of noise.~a! The test signalx1A(t), variablex1 of the first oscillator with characteristic frequencyf 1

51.1 Hz. The characteristic frequency of the second oscillator isf 250.24 Hz. The oscillators are unidirectionally and linearly coupled w
three different coupling strengths:h250.0 ~1!, 0.1 ~2!, and 0.2~3!. Each coupling lasts for 400 s at sampling frequencyf s510 Hz. Only the
first 15 s are shown in each case.~b! The power spectrum and~c! synchrogram.~d! The bispectrumuBu, using K533 segments, 66%
overlapping, and the Blackman window to reduce leakage and~e! its contour view.
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If the two frequency componentsk and l are frequency and
phase coupled,fk1 l5fk1f l , it holds that the biphase is
(2p) radians. For our purposes the phase coupling is
strict because dependent frequency components can be p
delayed. We consider phase coupling to exist if the biphas
constant~but not necessarily50 radians! for at least severa
periods of the lowest frequency component. Simultaneou
we observe the instantaneous biamplitude from which i
possible to infer the relative strength of the interaction.
thus hope to be able to observe the presence and persis
of coupling among the oscillators.

III. ANALYSIS

To illustrate the essence of the method, and to test it,
use a generic model of interacting systems whose basic
is the Poincare´ oscillator:

ẋi52xiqi2v i yi1gxi
,

ẏi52yiqi1v ixi1gyi
, ~6!

qi5a i~Axi
21yi

22ai !.

Herex andy are vectors of the oscillator state variables,a i ,
ai and v i are constants, andgy(y) and gx(x) are coupling
vectors. The activity of each subsystem is described by
two state variablesxi andyi , wherei 51, . . . ,N denotes the
subsystem.

The form of the coupling terms can be adjusted to stu
different kinds of interaction among the subsystems, e
additive linear or quadratic, or parametric frequency mo
lation. Examples will be considered both without and with
zero-mean white Gaussian noise to obtain more realistic c
ditions.
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Different cases of interaction are demonstrated for sign
generated by the proposed model. In each case we ana
thex1 variable of the first oscillator, recorded as a continuo
time series. For the first 400 s, the interoscillator coupl
strength was zero. It was then raised to a small cons
value. After a further 400 s, it was increased again. The fi
15 s and corresponding power spectrum for each coup
strength are shown in the figures for each test signal, in o
to demonstrate the changes in spectral content and beh
caused by the coupling. For bispectral analysis the wh
signal is analyzed as a single entity, but the transients cau
by the changes in coupling strength are removed prior
processing. First the classical bispectrum is estimated. B
quencies where peaks provide evidence of possible
quency interactions are then further studied by the calc
tion of the biphase and biamplitude as functions of tim
They were calculated using a window of length 100 s, mov
across the signal in 0.3 s steps.

A. Linear couplings

Let us start with the simplest case of a linear interact
between coupled oscillators. We suppose model~6! to consist
of only two oscillators,i 51,2. The parameters of the mod
are set toa151, a150.5 anda2 ,a251. The coupling term
is unidirectional and linear

gx1
5h2x2 , gy1

5h2y2 . ~7!

The test signalx1A(t) is the variablex1 of the first oscillator.
It is presented in Fig. 2~a! with the corresponding powe
spectrum for three different coupling strengths: no coupl
h250 and weak couplingsh250.1,0.2. The peaks labele
as f 151.1 Hz and f 250.24 Hz are the independent ha
monic components of the first and the second oscilla
These frequencies are deliberately chosen to approxima
have a noninteger ratio. There is also at least one p
1-3
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JAMŠEK et al. PHYSICAL REVIEW E 68, 016201 ~2003!
FIG. 3. ~a! Adapted bispectrumuBau, calculated from the test signalx1A using K534 segments, 80% overlapping, and the Blackm
window and~b! its contour view. Regions of the adapted bispectrum abovef 2.0.88 Hz and belowf 1,0.3 Hz are cut, because the triple
~1.1 Hz,1.1 Hz,1.1 Hz! and~0.24 Hz,0.24 Hz,0.24 Hz! produce high peaks that are physically meaningless.~c! Adapted biphasefa and~d!
biamplitudeAa for bifrequency~1.1 Hz,0.24 Hz!, using a 0.3-s time step and a 100-s-long Blackman window for estimating the DFT
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present at the harmonically related positionf 352 f 12 f 2 at-
tributable to interaction between the two oscillators. It aris
from the nonlinearity of the first oscillator, but is caused
the forcing of the second oscillator.

The principal domain of the bispectrum for the test sig
x1A , Fig. 2~d!, shows one peak at the bifrequency~1.1 Hz,
1.1 Hz!, the so-called self-coupling. No other peaks a
present. Bispectral analysis examines the relationships
tween oscillations at the two basic frequenciesf 1 and f 2 ,
and a modulation component at the frequencyf 16 f 2, which
is absent from the power spectra in Fig. 2~b!. Therefore, no
peak is present at bifrequency~1.1 Hz,0.24 Hz!. Thus, the
method as it stands is incapable of detecting the presenc
linear coupling between the oscillators by analysis of the
signalx1A . Nonetheless, we still suggest the use of bisp
tral analysis to investigate the presence of nonlinearity,
based on an adapted way of calculating the bispectrum.

In general, the bispectral method can be used to exam
phase and frequency relationships at arbitrary time. It is t
well suited for detecting the presence of quadratic coupli
and frequency modulation, since they both give rise to f
quency components at the sum and difference of the in
acting frequency components.

To be able to detect linear couplings using the bispec
method, as proposed, it is necessary to change the frequ
relation. Study of coupled Poincare´ oscillators demonstrate
the presence of a component at frequency 2k2 l as a conse-
quence of nonlinearity. This component was detected
merically, and is not necessarily characteristic of all nonl
ear oscillators. By modifying the bispectral definition to

Ba~k,l !5E@X~k!X~ l !X* ~2k2 l !#, ~8!

the biphase turns into

fa~k,l !5fk1f l2f2k2 l2fc , ~9!
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where indexa is introduced and will be used in what follow
to indicate that the values are obtained using the ada
method. To obtain 0 radians in the case of phase coupling
have to correct the adapted biphase expression~9! by sub-
tracting fc52f l2fk . In the presence of a harmonicall
related frequency component and phase coupling, the
phase will then be 0 radians.

The adapted bispectrumuBau for the signalx1A exhibits
several peaks, as shown in Fig. 3~a!. It peaks wheref 1

5f2; a triple product (f 1 , f 2 , f 3) of power at frequenciesf 1

5 f 25 f , and alsof 352 f 12 f 25 f , raises a high peak at th
bifrequency (f , f ). The self-coupling peak is physicall
meaningless, and it is therefore cut from the adapted bisp
trum. It can be used for additional checking, since it stron
implies nonlinearity@6#.

The peak of primary interest is at bifrequency~1.1 Hz,
0.24 Hz!. There is also a high peak positioned at bifrequen
~0.67 Hz,0.24 Hz! lying on the line where the third frequenc
in the triplet is equal to the frequency of the first oscillat
and is therefore a consequence of the method. The s
peaks present in the adapted bispectrum are the resu
numerical rounding error and leakage effects due to the D
calculation.

The peak~1.1 Hz,0.24 Hz! indicates that oscillations a
those pairs of frequencies are at least linearly freque
coupled. Frequency coupling alone is sufficient for a peak
the bispectrum to occur. Although the situation can in pr
ciple arise by coincidence, frequency and phase coupling
gether strongly imply the existence of nonlinearities. To
able to distinguish between different possible couplings,
calculate the adapted biphase Fig. 3~c!.

During the first 400 s of test signalx1A , where no cou-
pling is present, the adapted biphase changes continuo
between 0 and 2p radians. For the same time of observati
it can be seen that the adapted biamplitude is 0, Fig. 3~d!.
During the second and third 400 s of the signalx1A , a con-
stant adapted biphase can be observed indicating the p
1-4
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TIME-PHASE BISPECTRAL ANALYSIS PHYSICAL REVIEW E68, 016201 ~2003!
FIG. 4. Results in the presence of additive Gaussian noise.~a! Test signalx1B , variablex1 of the first oscillator with characteristic
frequencyf 151.1 Hz. The characteristic frequency of the second oscillator isf 250.24 Hz. The oscillators are unidirectionally and linear
coupled with three different coupling strengths;h250.0 ~1!, 0.1 ~2!, and 0.2~3!. Each coupling lasts for 400 s at a sampling frequen
f s510 Hz. Only first 15 s are shown in each case.~b! Its power spectrum and~c! synchrogram.~d! Adapted bispectrumuBau using K
533 segments, 66% overlapping, and the Blackman window and~e! its contour view. The parts of theuBau abovef 2.0.79 Hz and below
f 1,0.3 Hz are omitted because the triplets~1.1 Hz,1.1 Hz,1.1 Hz! and ~0.24 Hz,0.24 Hz,0.24 Hz! produce a high peak that is physical
meaningless.~f! Adapted biphasefa and ~g! adapted biamplitudeAa for bifrequency~1.1 Hz,0.24 Hz!, using a 0.3-s time step and
100-s-long window for estimating the DFT using the Blackman window.
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ence of linear coupling. The value of the adapted biamplitu
is higher in the case of stronger coupling. The coupling c
stanth2 can be obtained by normalization, and we are th
able to define the relative strengths of different couplings

When the oscillators are coupled bidirectionally the f
quency content of each of them changes and componentsf 1
and 2f 2 are generated. Both of these characteristic frequ
cies can be observed in the time series of each oscilla
Two combinatorial components are also present in their sp
tra, 2f 12 f 2 and f 122 f 2, assuming thatf 1. f 2. In analyz-
ing bidirectional coupling, the procedure described abo
can be extended and two combinatorial components sh
be analyzed in the same way.

Making use of the calculated instantaneous phases of
oscillatory components we also construct a synchrog
@Fig. 2~c!#, as proposed by Scha¨fer et al. ~see Ref.@1# and the
references therein!, and can immediately establish whether
not the coupling also results in synchronization.
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The instantaneous phases can also be used to calcula
direction and strength of coupling, using the methods
cently introduced by Schreiber, Rosenblumet al., and Palusˇ
et al. @2#.

B. Linear couplings in the presence of noise

We now test the method for the case where noise is ad
to the variablex1 of the first oscillator:

ẋ152x1q12v1y11gx1
1j~ t !,

~10!

ẏ152y1q11v1x11gy1
.

Here j(t) is zero-mean white Gaussian noise,^j(t)&50,
^j(t),j(0)&5Dd(t), andD50.08 is the noise intensity. In
this way we obtain a test signalx1B(t), Fig. 4~a!.
1-5
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FIG. 5. BispectrumuBu, calculated from the signalx1B presented in Fig. 4~a!, using K533 segments, 66% overlapping, and t
Blackman window to reduce leakage and~b! its contour view.~c! Biphasef and~d! biamplitudeA for bifrequency~1.1 Hz,0.24 Hz!, using
a 0.3-s time step and a 100-s-long window for estimating the DFTs using a Blackman window.~e! Phase differencec betweenf1 of the
characteristic frequency componentf 1 of the first oscillator andf2 of the characteristic frequency componentf 2 of the second oscillator, for
time step 1/f s and ~f! at each period of lowest frequency 1/f 2 in the bifrequency pair~1.1 Hz,0.24 Hz!, using interpolation and 100-s-lon
window for estimating DFTs using the Blackman window.
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For nonzero coupling strengthh2, the component at fre
quency positionf 3 can still be seen in the power spectrum
despite the noise, Fig. 4~b!. The adapted biphase@Fig. 4~f!#
can clearly distinguish between the presence and absen
coupling. When coupling is weaker, the adapted biamplitu
@Fig. 3~g!# is lower and the adapted biphase is less const

The bispectrum for the signalx1B , shown in Fig. 5~a!,
differs from that in the case of zero noise, Fig. 2~d!. Noise
raises two additional peaks positioned at~1.1 Hz,0.24 Hz!
and ~0.86 Hz,0.24 Hz!. The former could be the result o
interaction; the latter is due to the method: the sum of
frequencies in this bifrequency pair gives the frequency
the first oscillator.

Close inspection of the~0.24 Hz,1.1 Hz! peak by calcula-
tion of the biphase gives Fig. 5~c!. When coupling is present
the characteristic frequency of the second oscillator app
in the power spectrum@Fig. 4~b!#. Two frequencies of high
amplitude result in a small peak even if no harmonics
present at the sum and/or difference frequencies. The se
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peak is not of interest to us. It can easily be checked whe
a phase coupling exists among the bifrequencies from
time evolution of the biphase.

In general, besides estimating bispectral values, one
also observe the time dependences of the phase and a
tude for each frequency component and their phase relat
ships. This applies particularly to frequencies that form
bifrequency giving a high peak in the bispectrum or adap
bispectrum. Synchrograms, Figs. 2~c! and 4~c!, are obtained
by first calculating the instantaneous phase of each oscill
and then their phase difference@1#. The phase difference in
this case is between two fixed frequencies. We do not ca
late their instantaneous frequencies, although it is possibl
follow the frequency variation by calculating the phase d
ference at neighboring bifrequencies around the obser
one and showing them simultaneously on the same plot.
amples of the phase differencec5f12f2 between the
phases of the firstf1 and the secondf2 interacting oscilla-
tors are shown in Figs. 5~e! and 5~f!.
1-6
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TIME-PHASE BISPECTRAL ANALYSIS PHYSICAL REVIEW E68, 016201 ~2003!
FIG. 6. Results for quadratic coupling in the absence of noise.~a! The test signalx1C , variablex1 of the first oscillator with characteristic
frequencyf 151.1 Hz. The characteristic frequency of the second oscillator isf 250.24 Hz. Oscillators are unidirectionally and quadratica
coupled with three different coupling strengths:h250.0 ~1!, 0.05 ~2!, and 0.1~3!. Each coupling lasts for 400 s at sampling frequencyf s

510 Hz. Only the first 15 s are shown in each case.~b! The power spectrum.~c! The bispectrumuBu, using K533 segments, 66%
overlapping, and the Blackman window to reduce leakage and~d! its contour view. The part of the bispectrum abovef 2.1.0 Hz is cut,
because triplet~1.1 Hz,1.1 Hz,1.1 Hz! produces a high peak that is not physically significant.
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C. Quadratic couplings

We now assume that two Poincare´ oscillators can interac
with each other nonlinearly. A quadratic nonlinear interact
generates higher harmonic components in addition to
characteristic frequencies@5#. In order to study an exampl
where the firstf 151.1 Hz and secondf 250.24 Hz oscilla-
tors are quadratically coupled, we change the coupling te
in model ~6! to quadratic ones

gx1
5h2~x12x2!2, gy1

5h2~y12y2!2. ~11!

Clearly, the test signalx1C presented in Fig. 6~a! for three
different coupling strengths@no coupling h250 ~1! and
weak couplingsh250.05 ~2!, h250.1 ~3!# has a richer har-
monic structure. In addition to the characteristic frequenc
it contains components with frequencies 2f 1 , 2f 2 , f 11 f 2,
and f 12 f 2 @Fig. 6~b!#. Equation~11! also indicates that, a
well as having a particular harmonic structure, the com
nents of the signal x1C also have related phase
2f1 ,2f2 ,f11f2, andf12f2.

We expect several peaks@24# to arise in the bispectrum
The peak of principal interest is at bifrequency~1.1 Hz,0.24
Hz!. As before, the self-coupling peaks are at~1.1 Hz,1.1 Hz!
and~0.24 Hz,0.24 Hz! are of no interest, so they are cut fro
the bispectrum. Additional peaks appear at the bifrequen
~0.86 Hz,0.24 Hz!, ~0.62 Hz,0.48 Hz!, ~0.86 Hz,0.48 Hz!,
~1.1 Hz,0.48 Hz!, ~1.1 Hz,0.86 Hz!, and~1.34 Hz,0.86 Hz!.
The triplet of harmonically related frequency compone
( f 1 , f 2 , f 3) would peak in the bispectrum when the power f
all these frequencies differs from zero. The components 0
Hz,0.86 Hz,1.34 Hz, and 2.2 Hz resulting from quadra
couplings form such triplets that peak in the bispectru
~0.86 Hz,0.24 Hz,1.1 Hz!, ~0.86 Hz,0.48 Hz, 1.34 Hz!, and
~1.34 Hz,0.86 Hz,2.2 Hz!. Besides these, there are also oth
peaks, e.g., that at the bifrequency~0.62 Hz, 0.48 Hz! arising
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from the triplet~0.62 Hz,0.48 Hz,1.1 Hz!; the sum-difference
combination of such frequencies always give the charac
istic frequency, or one that results from quadratic coupli
The existence of such peaks has no other meaning than
strong indicator of second-order nonlinearity. Consequen
the biphase for all peaks due to possible nonlinear mec
nisms in the bispectrum must have the same value, and s
behavior, as shown, e.g., in Figs. 7~a! and 7~c!. The biphase
is constant in the presence of quadratic coupling. From
biamplitude, the coupling constant can be determined by n
malization.

In the power spectrum there is a component at freque
2 f 12 f 2, even although linear coupling is absent. It aris
from nonlinearity in the Poincare´ oscillator. The adapted
bispectrum for the signalx1C shows a peak at bifrequenc
~1.1 Hz,0.24 Hz!, but the adapted biphase varies contin
ously: we may therefore exclude the possibility of linear co
pling being present.

D. Quadratic couplings in the presence of noise

As in the case of linear coupling~Sec. II B! we add a
noise term to the quadratic couplinggx1

and obtain the tes

signalx1D , presented in Fig. 8~a!.
Using the bispectral and adapted bispectral methods,

find that we obtain results very similar to those in the a
sence of noise. The method is evidently noise robust.
results for nonzero coupling are quite different from tho
where coupling is absent, Fig. 8~e!.

E. Frequency modulation in the presence of noise

We are also interested of being able to detect parame
frequency modulation and to distinguish it from quadra
coupling. Parametric modulation produces frequency com
nents at the sum and difference of the characteristic
1-7
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FIG. 7. ~a! The biphasef and ~b! biamplitudeA for the test signalx1C for bifrequency~1.1 Hz,0.24 Hz!, using 0.3-s time step and
100-s-long window for estimating DFT using the Blackman window.~c! Biphase and~d! biamplitude for the bifrequency~0.86 Hz,0.24 Hz!,
with a 0.3-s time step and a 100-s-long window for estimating DFT using the Blackman window.
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quency and the modulation frequency, i.e., the same two
quency components that can also result from quadr
coupling. Let us now consider an example where the fi
oscillator f 151.1 Hz is frequency modulated by the seco
one f 250.24 Hz. For this purpose the equations of the fi
oscillator become

ẋ152x1q12y1~v11hmx2!1j~ t !,
~12!

ẏ152y1q11x1~v11hmy2!.

The model parametersa1,2, a1,2 and the noise intensityD
are chosen to be the same as in the previous examples.

We thus obtain a test signalx1E . It is the time evolution
of the variablex1 of the first oscillator, presented in Fig. 9~a!
with the corresponding power spectrum 9~b! for three differ-
ent parametric frequency modulation strengths: no mod
tion hm50; and modulationhm50.1,0.2. The bispectrum o
the test signalx1E , Fig. 9~c!, exhibits several high peaks
The highest are at bifrequencies~1.1 Hz,0.86 Hz!, ~0.86 Hz,
0.24 Hz!, and ~1.1 Hz,0.24 Hz!, in addition to the~1.1 Hz,
1.1 Hz! peak. They also appear in the case of quadratic c
pling. In general, however, the other peaks that appear
quadratic coupling are absent. The reason is that although
component of the second oscillatorf 2 ~one component of the
triplet! is not present in the power spectrum, its value is
not exactly zero.

Observing the biphase, no epochs of constant biphase
be observed, although for strong frequency modulation
biphase is less variable. In the power spectrum, Fig. 9~b!, no
component rises above the noise level at frequencyf 2, of the
bifrequency pair, where the bispectrum peaks. This is an
dication that there is parametric coupling between the os
lators, as there is a high value of biamplitude. The biph
changes runs between 0 and 2p, and is modulated in the
absence of noise. There are also no rapid 2p phase slips of
the kind that are normal if no modulation is present. In t
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absence of couplings and modulation, but in the presenc
noise, there would be no such peaks in the power spect
or bispectrum.

IV. SUMMARY AND CONCLUSIONS

We have extended the bispectral method to encomp
time dependence and have demonstrated the potential o
extended technique to determine the type of coupling am
interacting nonlinear oscillators. Time-phase couplings c
be observed by calculating the bispectrum and adap
bispectrum and by obtaining the time-dependent biphase
biamplitude. The method has the advantage that it allows
arbitrary number of interacting oscillatory processes to
studied.

Recently introduced methods for synchronization analy
among chaotic and noisy oscillations~see Ref.@1# and refer-
ences therein! have stimulated applications to a variety
different systems. Methods for quantifying the strength a
identifying the direction of couplings, based on nonline
dynamic or information theory approaches, have recen
been proposed@2#. Here we have addressed the question
the type of coupling that may result in synchronization, a
we have proposed a method for its analysis. It is applica
to both univariate data~a single signal from the couple
system! or multivariate data~a separate signal from eac
oscillator!.

Millingen et al. @15# have analyzed multivariate data u
ing a combined wavelet and bispectral method, and h
discussed its application in the field of chaos analysis. H
we have concentrated on univariate data and illustrated
potential of the time-phase bispectral method for the de
tion of higher-order couplings in the presence of noise. T
possibility of using univariate data is of particular impo
tance when dealing with real signals, as in practice we of
cannot observe and measure the separate subsystems di
but only their combination, which is intrinsically difficult
Most of the methods proposed so far for synchronizat
analysis and detection of the direction of couplings are ba
1-8
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FIG. 8. Results for quadratic couplings in the presence of additive Gaussian noise.~a! The test signalx1D , variablex1 of the first
oscillator with characteristic frequencyf 151.1 Hz. The characteristic frequency of the second oscillator isf 250.24 Hz. The oscillators are
unidirectionally and quadratically coupled with three different coupling strengths:h250.0 ~1!, 0.05~2!, and 0.1~3!. Each coupling lasts for
400 s at a sampling frequencyf s510 Hz. Only the first 15 s are shown in each case.~b! The power spectrum.~c! The bispectrumuBu
calculated withK533 segments, 66% overlapping, and using the Blackman window to reduce leakage and~d! its contour view. The part of
the bispectrum abovef 2.1.0 Hz is cut, because the triplet~1.1 Hz,1.1 Hz,1.1 Hz! produce a high peak that is physically meaningless.~e!
The biphasef and~f! biamplitudeA for bifrequency~1.1 Hz,0.24 Hz!, with a 0.3-s time step and a 100-s-long window for estimating DF
using the Blackman window.
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on bivariate or multivariate data@1,2#. In conjunction with
frequency or time-frequency filtering@27# or mode decom-
position@28# to obtain two or more ‘‘separate’’ signals, thes
methods can be used for univariate data as well. Synchr
zation can also be detected in univariate data through
analysis of angles and radii@29# in return time maps@30#.

The time-phase bispectral method proposed in this pa
is not only applicable to the synchronization analysis
univariate data but also, at the same time, allows one
determine the nature of the couplings among the interac
nonlinear oscillators. Its benefits include~1! the possibility of
observing the whole frequency domain simultaneously;~2!
detecting that two or more subsystems are interacting w
each other;~3! quantification of the strength of the intera
tion; and~4! determination of whether the coupling is add
tive linear or quadratic, or parametric in one of the freque
01620
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er
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cies. We have shown the method to be suitable for
analysis of noisy signals.

Although we have shown that the technique works eff
tively on a well-characterized simple model, there will b
some difficulties to be faced and overcome in applying it
real problems, e.g., to data from the cardiovascular syst
Understanding the content of the bispectrum and identifi
tion of the peaks of interest are not always straightforwa
To appreciate which peaks are those to focus on, one ha
be aware of the basic properties of the system and its fun
mental frequencies. Distinguishing a quadratic interact
from parametric frequency modulation may be easy wh
the coupling~modulation! is relatively strong, but become
more difficult in the case of relatively weak coupling~modu-
lation!. In the latter case, observing each phase in the tri
separately can be helpful. Also it is not always an easy t
1-9
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FIG. 9. Results for parametric frequency modulation in the presence of additive Gaussian noise.~a! The test signalx1E , of variablex1

of the first oscillator with characteristic frequencyf 151.1 Hz frequency modulated by the second oscillatorf 250.24 Hz with three different
frequency modulation strengths:hm50.0 ~1!, 0.1 ~2!, and 0.2~3!. Each frequency modulation lasts for 400 s, at sampling frequencf s

510 Hz. Only the first 15 s are shown in each case.~b! The power spectrum.~c! The bispectrumuBu calculated withK533 segments, 66%
overlapping, and using the Blackman window to reduce leakage and~d! its contour view. The part of the bispectrum abovef 2.1.0 Hz is cut,
because the triplet~1.1 Hz,1.1 Hz,2.2 Hz! produces a high peak that is physically meaningless.~e! The biphasef and~f! biamplitudeA for
bifrequency~1.1 Hz,0.24 Hz!, with a 0.3-s time step and a 100-s-long window for estimating the DFTs using the Blackman window
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to distinguish between quadratic interaction and parame
frequency modulation in the cases when both of them oc
simultaneously. Further, where the possible basic frequen
are relatively close, it will be hard to detect them separat
This could cause particular problems in the detection of q
dratic phase couplings where frequency pairs are close
gether. Although it is possible in principle to study an ar
trary number of interacting oscillators, it is advisable
practice to study them in pairs: a knowledge of the ba
frequency of each is necessary.

The time-dependent biphase-biamplitude estimate was
timated with a short-time Fourier transform~STFT!, using a
window of constant length. The optimal window length d
pends, however, on the frequency being studied. The ef
tive length of the window used for each frequency can
varied by applying the wavelet transform, or the select
Fourier transform. For demonstration purposes above,
natural frequencies of the oscillators were chosen to
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within a relatively narrow frequency interval. A STFT wa
therefore sufficient for good time and phase~frequency! lo-
calization. With a broader frequency content, however,
wavelet transform or selective Fourier transform will need
be applied.

Higher-order spectral methods can be used to study a
trary interactions among coupled oscillators: of quadra
cubic, or even higher order. In this paper we have conc
trated on the lowest one, using the third-order spectrum
bispectrum. For higher orders the volume of the calculatio
rises substantially, and the method becomes numerically
creasingly demanding. At the same time, graphical prese
tion and interpretation of the results become increasingly
ficult.
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APPENDIX: VARIANCE OF THE BISPECTRUM
ESTIMATE

In order to interpret bispectral values from a finite leng
time series, the statistics of bispectrum estimates mus
known. To achieve statistical stability, the time series is
vided into K segments for averaging@25#. When there is a
large number of segments, the estimate gains statistical
bility at the expense of power spectral and bispectral res
tion. For a real signal, with a finite number of points, t
compromise between bispectral resolution and statistical
bility may be expected atK around 30. Estimates are subje
to statistical error, such as bias and variance. An estim
must be consistent, that is the statistical error must appro
zero in the mean-square sense as the number of realiza
becomes infinite. Here we neglect the effects of finite ti
series length, we assume that they are sufficiently long.
us consider the bias and the variance of the bispectrum
mateB̂(k,l ). The expected value ofB̂(k,l ) will be

E@B̂~k,l !#5
1

K (
i 51

K

E@Xi~k!Xi~ l !Xi* ~ l ,k!#

5E@X~k!X~ l !X* ~ l ,k!#5B~k,l !, ~A1!

as K becomes infinite,Xi is the DFT of thei th segment.
Thus, B̂(k,l ) can be taken as an unbiased estimate@29#. Its
variance will be

var~B̂!5E@B̂B̂* #2E@B̂#E@B̂* #

5
1

K
$E@ uX~k!u2uX~ l !u2uX~k1 l !u2#2EuB~k,l !u2%.

~A2!

Note that the variance is inversely proportional toK. From a
mathematical statistics point of view, it is a nontrivial task
compute the quantity in the bracket in terms of low ord
spectra, but one may write a good approximation@26#,
R
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E@ uX~k!u2uX~ l !u2uX~k1 l !u2#5P~k!P~ l !P~k1 l !,
~A3!

in which case the variance will be

var~B̂!5E@ uB̂~k,l !u2#2E@B̂~k,l !#2

'
1

K
P~k!P~ l !P~k1 l !@12b2~k,l !#. ~A4!

Note that it is a consistent estimate in the sense that
variance approaches zero asK becomes infinite. The vari-
ance is proportional to the product of the powers†P(k)
5E@X(k)X* (k)#‡ at the frequenciesk, l, andk1 l . Conse-
quently, a larger statistical variability is introduced in es
mating larger values in the bispectrum. Finally, the varian
is proportional to@12b2(k,l )#, where the bicoherenceb

2
is

a normalized bispectrum, b2(k,l )5E@B̂(k,l )#2/
@P(k)P( l )P(k1 l )#. That is, when the oscillations atk, l,
andk1 l are nonlinearly coupled (b2'1), the variance ap-
proaches zero, and when the components are statisticall
dependent (b2'0), the variance is proportional to the pow
at each spectral component@26#.

Brillinger and Rosenblatt@3# have investigated the
asymptotic mean and variance of Fourier-type estimates
high-order spectra and proved that under certain assump
the kth order spectral estimate is asymptotically unbias
and Gaussianly distributed and that estimates of different
der are asymptotically independent. The variances of the
and imaginary parts of the bispectrum are asymptotica
~i.e., for largeK) Gaussian and are equal, var$Re@B̂(k,l )#%
>var$Im@B̂(k,l )#%. For a perfect phase-coupled triplet, th
variances of the real and imaginary parts are equal to zero
the case of no coupling, there is an identical contribution
the variances from the real and imaginary parts of the e
mate of the bispectrum.

The total variance is a sum of individual (i 51, . . . ,K)
contributions, because different triplets are mutually stati
cally uncorrelated in the absence of phase coupling. Pa
coupling can be expected to result in a combination of p
fectly phase-coupled oscillations and oscillations with ra
domly changing phases.
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