Park, Timothy Alexander and Eckley, Idris (2014) Wavelet Methods for Multivariate Nonstationary Time Series. PhD thesis, Lancaster University.
Abstract
This thesis proposes novel methods for the modelling of multivariate time series. The work presented falls into three parts. To begin we introduce a new approach for the modelling of multivariate non-stationary time series. The approach, which is founded on the locally stationary wavelet paradigm, models the second order structure of a multivariate time series with smoothly changing process amplitude. We also define wavelet coherence and partial coherence which quantify the direct and indirect links between components of a multivariate time series. Estimation theory is also developed for this model. The second part of the thesis considers the application of the multivariate locally stationary wavelet framework in a classification setting. Methods for the supervised classification of time series generally aim to assign a series to one class for its entire time span. We instead consider an alternative formulation for multivariate time series where the class membership of a series is permitted to change over time. Our aim therefore changes from classifying the series as a whole to classifying the series at each time point to one of a fixed number of known classes. We also present asymptotic consistency results for this framework. The thesis concludes by introducing a test of coherence between components of a multivariate locally stationary wavelet time series.