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Abstract

This thesis proposes novel methods for the modelling of multivariate time series. The

work presented falls into three parts. To begin we introduce a new approach for the

modelling of multivariate non-stationary time series. The approach, which is founded

on the locally stationary wavelet paradigm, models the second order structure of a

multivariate time series with smoothly changing process amplitude. We also define

wavelet coherence and partial coherence which quantify the direct and indirect links

between components of a multivariate time series. Estimation theory is also developed

for this model.

The second part of the thesis considers the application of the multivariate locally

stationary wavelet framework in a classification setting. Methods for the supervised

classification of time series generally aim to assign a series to one class for its entire

time span. We instead consider an alternative formulation for multivariate time series

where the class membership of a series is permitted to change over time. Our aim

therefore changes from classifying the series as a whole to classifying the series at each

time point to one of a fixed number of known classes. We also present asymptotic

consistency results for this framework.

The thesis concludes by introducing a test of coherence between components of a

multivariate locally stationary wavelet time series.
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Chapter 1

Introduction

The wavelet transform introduced by Daubechies (1990) has received considerable

attention within the statistics community over the last twenty years. Much of their

utility derives from their localised form which permits a location dependent frequency

decomposition of a function, time series or image. This allows for more efficient

modelling of features such as gradual changes in structure or sudden discontinuities.

Consequently wavelet based methods have been applied to many different classes of

problems in areas such as time series, signal processing and image processing.

Within the wavelets time series literature, one of the key developments has been

the introduction of the locally stationary wavelet process by Nason et al. (2000). Their

model makes use of the localisation of the wavelet basis to allow for smooth changes

in the second order structure of a time series, thus removing the need to assume

stationarity. Removing this, often restrictive, assumption means that the model of

Nason et al. (2000) can be applied to a wider range of time series. We will describe

their approach in Chapter 2 as well as reviewing some of its recent applications in the
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statistics literature. Chapter 2 also covers some of the key aspects of wavelet theory

as well as contrasting this with the Fourier basis.

The more recent expansion of sensor based data recording means that the problem

of modelling a multivariate time series is becoming increasingly important. Such series

are often long in length and characterised by evolving properties. While univariate

methods can be used to model the individual components separately this does not

allow for the modelling of dependencies between components. To this end Chapter 3

introduces the multivariate locally stationary wavelet model which is able to model a

multivariate time series with an evolving second order structure. This model is able

to not only capture the dependencies between the components of a series but is also

able to distinguish between components with a direct dependence and those which

are dependent only through other components.

In Chapter 4 we make use of the multivariate locally stationary wavelet model

introduced in Chapter 3 and apply it to the problem of dynamic classification of time

series. The problem of classifying an entire time series into one of a known number

of classes has been well studied in the literature, here we consider a variant on this

problem. Specifically we focus on the situation where the class membership of a time

series is permitted to change over time. Under this dynamic framework the class

membership of a time series is estimated locally rather than globally.

Another application of the multivariate locally stationary wavelet model is cov-

ered in Chapter 5. We have already stated that the multivariate locally stationary

wavelet model can be used to identify dependencies between different components in

a multivariate time series. In Chapter 5 we introduce a formal hypothesis test for

2



coherence which aims to determine if these dependencies are statistically significant.

This makes it possible to easily identify which components are dependent and, by

using a wavelet basis, we are also able to identify which time and frequency points are

contributing to the dependence. Finally in Chapter 6 we conclude with some ideas

for future research.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter we review some of the key concepts of time series analysis which we

will build upon in later chapters. We define a time series, which is also referred

to as a signal, to be a set of observations, Xt, of a process measured sequentially

through time. These measurements can either be made continuously through time or

at a discrete set of time points. Within this thesis we restrict ourselves to discrete

time observations Xt, t ∈ N where Xt ∈ R.

Typically such time series display some degree of serial dependence, i.e. the value

of the series at time t will depend on the value of the process at previously observed

time points. Examples of such processes include the well-known moving average pro-

cesses of order p (often denoted MA(p)) which takes the form, Xt = ξt +
∑p

i=1 θiξt−i,

where {θi}i∈{1,...,p} is the set of model parameters and {ξt}t∈N is a set of indepen-

dent and identically distributed zero-mean random innovations. Another time series
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model which we can use is the autoregressive (AR) processes. Typically an AR pro-

cess of order q is denoted as AR(q) and takes the form, Xt =
∑q

i=1 φiXt−i + ξt, where

{φi}i∈{1,...,q} is the set of model parameters. Many excellent texts have been written

on the subject of time series analysis. We therefore refer interested readers to Priest-

ley (1981a); Shumway and Stoffer (2000); Chatfield (2003) and Brockwell and Davis

(2009) for a comprehensive treatment of these long-established time series models.

One of the key concepts which has underpinned much of the previous work on

time series modelling is that of stationarity. A time series is said to be strictly

stationary if the joint distribution of a set of time series observations, X1, . . . , Xn is

identical to the joint distribution of the observations, X1+τ , . . . , Xn+τ , for some value

of τ ∈ Z. An alternative, less restrictive assumption is that a time series is second

order stationarity. A time series is said to be second order stationary if it has a

constant mean and the covariance between observations only depends upon the lag

between them, so that,

E [Xt] = µ, and, cov (Xt, Xt+τ ) = κτ .

In essence stationarity requires the key statistical properties of a time series to remain

constant over time.

Note that in the remainder of this thesis, we will use the term stationary time

series to mean a second order stationary time series. The remainder of this chapter

proceeds as follows: Section 2.2 describes the Fourier representation of a stationary

time series both in the univariate and multivariate settings. Section 2.3 describes

some adaptations of the stationary Fourier basis which can be used to represent

5



nonstationary time series. Section 2.4 introduces the wavelet basis and gives details of

different forms of wavelet transform. Section 2.5 concludes this chapter by describing

the locally stationary wavelet model for nonstationary time series. Sections 2.5 also

includes some recent applications of the LSW model.

2.2 Fourier Representation of a Stationary Time

Series

The Fourier basis is a long established basis which can be used to construct a time

series representation. In this section we give a brief overview of some widely used

Fourier representations for univariate time series which are second order stationary,

a more thorough description can be found in Priestley (1981a), Bloomfield (2000) or

Shumway and Stoffer (2000).

The Fourier basis is essentially a combination of sine and cosine functions. Often

these are combined into a single complex exponential,

exp(iωt) = cos(ωt) + i sin(ωt).

Clearly this is an oscillatory function, the frequency of oscillation can be controlled by

varying the parameter, ω. The Fourier basis is therefore ideal for representing series

which exhibit some form of oscillation or periodicity.
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2.2.1 Stationary Fourier Representation

Given the definition of the Fourier basis it is simple to construct a representation

for a time series. Let Xt be a second order stationary time series with zero mean.

Following the notation of Dahlhaus (1997) a Fourier representation of Xt is,

Xt =

∫ π

−π
A(ω) exp(iωt) dξ(ω), (2.1)

where dξ(ω) is a stochastic process with the properties that E [ dξ(ω)] = 0 and

E
[

dξ(ω) dξ(λ)
]

= δωλ. The complex valued function A(ω) is know as the amplitude

or transfer function. For Xt to be real valued then the transfer function must have

the property that A(ω) = A(−ω).

The second order structure of Xt can be uniquely defined in terms of its spectrum,

fX(ω). Let κX,s = cov (Xt, Xt+s) be the covariance function for the process Xt. The

spectrum at frequency ω is defined as,

fX(ω) = T
∞∑

s=−∞

κX,s exp (−iωsT ), (2.2)

Inverting this relationship we see that the covariance can be expressed in terms of the

spectrum as follows,

κX,s =
1

T

∫
fX(ω) exp (iωsT ) dω. (2.3)

Expressing the covariance in this way demonstrates how the spectrum provides a

frequency based decomposition of the second order structure of the time series. If we

consider the variance of the series it is also possible to show that the spectrum can

7



be expressed in terms of the transfer function,

Var {Xt} =E
[
X2
t

]
,

=

∫ ∞
−∞

∫ ∞
∞

A(ω)A(ω′) exp [i(ω′ − ω)t]E [ dξ(ω) dξ(ω′)] ,

=

∫ ∞
−∞
|A(ω)|2 dξ(ω) =

∫ ∞
−∞

fX(ω) dξ(ω).

Therefore fX(ω) = |A(ω)|2 is an alternative definition of the spectrum which demon-

strates the link between the transfer function and the second order structure.

We demonstrate the link between the spectrum and covariance structure by con-

sidering two processes Xt and Yt. Both are realisations of an AR(1) processes with

parameters of 0.9 and -0.9 respectively, i.e. Xt = αXt−1 + ξt where α = 0.9 or −0.9.

These series are show in Figures 2.1(a) and 2.1(c). For Xt the AR parameter of 0.9

makes it likely that consecutive time points will be close together causing the value of

the series to change slowly or in other words the series is characterised by low frequen-

cies. This is reflected in the spectrum, shown in Figure 2.1(b), which has high values

in the low frequency range and near zero values for all other frequencies. Conversely

for Yt each value is likely to have the opposite sign to the previous value and so the

series changes quickly and will be characterised by high frequencies. The spectrum of

Yt, Figure 2.1(d), is therefore nonzero only for high frequencies.

Spectral Estimation In order to perform inference on a series we must be able to

estimate its spectrum. For a time series Xt observed at time points t ∈ {0, . . . , T −1},

the first step is to take a Fourier transform of the series to obtain the set of Fourier

8
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Figure 2.1: Examples of the Spectra of two different processes

coefficients, {bωk
}. These coefficients are given by,

bωk
=

1

T

T∑
t=1

Xt exp (−iωkt) (2.4)

where ωk = k
T

, for k = 0, 1, . . . , T − 1. The Fourier coefficients are then used to

compute the periodogram of the series, which is defined as I(ωk) = |bωk
|2. It can be

shown that for a Gaussian time series the periodogram follows a scaled chi-squared
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distribution such that,

I(ωk)

f(ωk)
∼


χ2
1 if k = 0

1
2
χ2
2 if k 6= 0

(2.5)

See Priestley (Chapter 6, 1981) for details. Using this distributional property the

periodogram can be seen to be an unbiased but inconsistent estimator of the spec-

trum. In order to overcome the problem of inconsistency the periodogram is generally

smoothed over frequency, for example using kernel smoothing. The kernel smoothed

periodogram is defined as,

Ĩ(ωk) =
h∑

j=−h

w(h)I(ωk+j) (2.6)

Where H = 2h + 1 is the width of the smoothing kernel and w(h) is the kernel

function. There has been much work on selecting the optimum window size, see for

example the methods of Lee (1997) or Ombao et al. (2001). A wider window lowers

the variance of the estimator, however this is achieved at a cost of introducing bias.

2.2.2 Multivariate Stationary Fourier Representation

We next turn to consider an extension of the Fourier stationary time series setting for

multivariate time series. While individual components of a multivariate time series

can be represented separately using the univariate representation, this does not take

into account any dependencies between components. The remainder of this section will

describe two quantities which can be used to measure such dependencies: coherence

and partial coherence.
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Coherence: When considering a multivariate second order stationary time series it

is possible that different components of the series will have some cross-dependence.

One possible measure of linear dependence between components is the correlation. For

a bivariate series X t = [X1
t , X

2
t ]′, whose two components have standard deviations,

σ1 and σ2 respectively, the correlation between the two components at a lag s ∈

{1, . . . , T − s} is given by,

r12(s) =
cov

(
X1
t , X

2
t+s

)
σ1σ2

. (2.7)

Correlation is simply the covariance at a lag of s normalised by the product of the

standard deviations. The issue with time domain measures such as correlation is

that they do not reveal if the relationship between the components has a frequency

dependence. Identifying frequency dependence is important in many applications such

as electroencephalogram (EEG) analysis where the frequency at which components

are related often reveals much about the physical process. We therefore turn our

attention to coherence as a frequency specific measure of the relationship between

two components.

Before we can define the coherence between two components we must first consider

how to represent the relationship between two components in the Fourier domain. Let

κ12,s = cov
(
X

(1)
t , X

(2)
t+s

)
be the cross-covariance function between the components

X
(1)
t and X

(2)
t at lag s. Then the cross-spectrum, f12(ω), between two components at

frequency ω is simply,

f12(ω) = T

∞∑
s=−∞

κ12,s exp (−iωsT ).
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The cross-spectrum can also be defined in terms of the transfer functions of the two

series,

f12(ω) = A1(ω)A2(ω).

From this definition it is clear that the cross spectrum is complex and f12(ω) = f21(ω).

Definition 2.1 Let f1(ω) and f2(ω) be the spectra for the two components of the

bivariate time series X t for the range of observable frequencies ω ∈ [−1/2, 1/2]. Also

let f12(ω) be the cross spectrum between the two components. The coherence between

the components, ρ12(ω), is then defined as,

ρ12(ω) =
|f12(ω)|

[f1(ω)f2(ω)]
1
2

, ω ∈ [−1/2, 1/2]. (2.8)

There are clear similarities between this definition of the coherence and the definition

of correlation in equation (2.7). Note that coherence takes a value in the interval [0, 1].

A value of close to 1 indicates that there is a strong linear relationship between the

structures of the two series at that particular frequency and may indicate a dependence

between the series at that frequency. A value of close to zero indicates that at that

frequency the components are independent.

Partial Coherence: When a multivariate time series consists of more than two

components, simple pairwise coherence is not the only quantity we can consider.

Consider by way of example the case of three components, X
(1)
t , X

(2)
t and X

(3)
t . The

coherence may indicate dependencies between all pairs of components. There are two

possible explanations for this: either (a) there is some direct relationship between

all three components or (b) two of the components are related only through their
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relationship with the third. For example the coherence between X
(1)
t and X

(2)
t may

be due to a direct dependence between them or it may be due to them both having

a direct dependence with X
(3)
t . Coherence can not make this distinction, however

partial coherence can. Partial coherence is a measures of the coherence between a

pair of components after any linear relationships with all other observed components

have been removed. Following Koopmans (1975) we define the partial coherence in

terms of the partial coherency, γ12.3(ω). Briefly the partial coherence is defined as

follows,

Definition 2.2 Let X
(1)
t , X

(2)
t and X

(3)
t be the three components of a tri-variate time

series. Also let fp(ω) be the Fourier spectrum for the p-th component of the series

and let fpq(ω) be the cross spectrum between the p-th and q-th components for ω ∈

[−1/2, 1/2]. Finally let ρpq(ω) be the Fourier coherence between the p-th and q-th

components of the time series. The partial coherency between components 1 and 2 is

then defined as,

γ12.3(ω) =
γ12(ω)− γ13(ω)γ32(ω)

[(1− ρ213(ω))(1− ρ223(ω)]
1
2

. (2.9)

Where and γ12(ω) is the coherency which is defined as,

γ12(ω) =
f12(ω)

[f1(ω)f2(ω)]
1
2

. (2.10)

The partial coherence is then the modulus of the partial coherency so that,

ρ12.3(ω) = |γ12.3(ω)| (2.11)

Partial coherence can also be extended to cases where there are more than three series.

Fore example X
(1)
t and X

(2)
t may have direct linear relationships with X

(3)
t , X

(4)
t and
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so on, but not with each other. Fourier partial coherence is covered in more detail by

Koopmans (1975) and Priestley (1981b).

2.3 Fourier Representations for Nonstationary Time

Series

Whilst the Fourier basis has been used to derive a spectral approach for stationary

time series, in recent years researchers have sought to adapt the basis to permit

modelling of time series whose second-order structure is evolving over time. In this

section we will describe two such representations.

2.3.1 The Locally Stationary Fourier Representation

The first nonstationary Fourier representation was proposed by Priestley (1965) but

we will describe the representation proposed by Dahlhaus (1997) as it includes a full

asymptotic theory. The Dahlhaus representation is very similar to the stationary

representation however the transfer function, A(ω) is replaced by the time varying

transfer function, A0
t,T (ω). The nonstationary seriesXt,T is thus represented as follows,

Xt,T =

∫ π

−π
A0
t,T (ω) exp (iωt) dξ(ω). (2.12)

Although stationarity over the whole series is no longer necessary in this setting,

this representation does assume that the series is locally stationary. What this means

in practice is that when viewed over a sufficiently short time window the series can

be assumed to be stationary. To achieve this some smoothness conditions must be
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placed on A0
t,T to control its behaviour. The time varying spectrum for this process

is defined in a similar way to the stationary case such that, fX(ω) =
∣∣A0

t,T (ω)
∣∣2. As

such the spectrum provides a time-frequency decomposition of the series as opposed

to simply a frequency decomposition.

When examining the asymptotics of such a process Dahlhaus (1997) noted that

the usual concept of increasing T corresponding to observing the process for a longer

time was inadequate for nonstationary series. He therefore introduced the concept of

rescaled time whereby the time series is always observed on the interval u = t/T ∈

[0, 1]. Under this framework increasing the number of observations corresponds to

observing the same time span with increasing resolution.

To estimate the time varying spectrum of a process such as this we must take a

Fourier transform of the time series which is localised in time. The Fourier transform

described in equation (2.4) puts equal weight on all time points. A localised Fourier

transform uses a taper function to put greater weight on time points closest to the

time of interest. The localised Fourier coefficient calculated using taper function Ψ(u)

at rescaled time point u and frequency ωk is,

du,ωk
=

1

T

T∑
t=1

XtΨ(t− uT ) exp (−iωkt). (2.13)

These coefficients can then be used to estimate the spectrum in a similar way to the

stationary setting.
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2.3.2 SLEX

Building on the ideas of a nonstationary Fourier model Ombao et al. (2002) introduced

the Smooth Localised Exponential (SLEX) basis. This model aims to segment a series

into stationary blocks whilst also allowing for neighbouring blocks to overlap. Ombao

et al. (2002) achieve this using a projection operator which preserves orthonormality

whilst allowing for smooth time localisation.

A SLEX basis function, ψS,ω(t), is localised to have support for discrete time block

S = {α0− ε+ 1, . . . , α1− ε} where ε is the size of overlap between neighbouring time

blocks. The general form of this basis vector is,

ψS,ω(t) = ΨS,+(t) exp

(
i2πω

t

|S |

)
+ ΨS,−(t) exp

(
−i2πω t

|S |

)
, (2.14)

where ω ∈ [−1/2, 1/2] is the oscillating frequency. This is equivalent to applying

two tapers, one, ΨS,+(t), to the positive frequencies and the second, ΨS,−(t), to the

negative frequency. These tapers have the general form,

ΨS,+(t) = r2
(
t− α0

ε

)
r2
(
α1 − t
ε

)
,

ΨS,−(t) = r

(
t− α0

ε

)
r

(
α0 − t
ε

)
− r

(
t− α1

ε

)
r

(
α1 − t
ε

)
.

The function r(.) is known as the rising cut-off function, choices of this function can

be found in Wickerhauser (1994).

The aim of the SLEX basis is to represent the nonstationarity of a series by

segmenting it into stationary blocks. A segmentation which covers all time points

with neighbouring blocks overlapping by ε is referred to as a basis. The set of all

possible bases is referred to as the SLEX library. The library is divided into J + 1
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different levels labelled j ∈ {0, 1, 2, . . . , J} and each level is divided up into 2j blocks

containing Mj = T/2j points. The block at level j and position b ∈ {0, 1, . . . , 2j − 1}

is labelled as S(j, b). A SLEX library containing three levels is shown in Figure 2.2.

This library contains five possible bases, one of which is shown by the shaded blocks.

To represent a series it is necessary to select a suitable basis from the library.

Ombao et al. (2005) achieve this by assigning a complexity penalised cost to each

block and then using the best basis algorithm (BBA) of Coifman and Wickerhauser

(1992) to select the basis with the lowest total cost.

S(0,0)

S(1,0) S(1,1)

S(2,0) S(2,1) S(2,2) S(2,3)

Figure 2.2: Example of a SLEX library with J = 2. Shaded blocks show one possible

basis choice.

2.3.3 Criticisms of the Nonstationary Fourier Representation

One issue with the approach of Dahlhaus (1997) is the choice of taper function in

equation (2.12). Both the span and shape of this taper must be chosen to accurately

reflect the observed series. Data adaptive methods for choosing this taper exits,

however these can be computationally slow. The SLEX basis overcomes this issue by

including a computationally fast basis selection however this is only possible if the

series is segmented dyadically. This can be very restrictive especially if the length of
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the series is short. In the next section we will introduce the wavelet basis which does

not need to be adapted to represent nonstationary series and so does not suffer from

these problems.

2.4 Wavelet Methods

So far we have introduced the decomposition of a stationary time series in terms of

its different frequency components using a Fourier basis. In this section we move to

representations of nonstationary time series and introduce time-scale decompositions

using a wavelet basis. We start by describing the general concept of a multiresolution

analysis before introducing the wavelet basis function. We then proceed to describe

some different forms of wavelet transform.

2.4.1 Multiresolution Analysis

Before we describe the properties of a wavelet basis we first describe the more general

concept of multiresolution analysis (MRA) of a function first introduced by Meyer

(1986) and Mallat (1989b). Simplistically, one might view MRA as the ability to zoom

in or out in order to view a function with varying levels of detail. More precisely an

MRA is a collection of closed subspaces Vn for n ∈ Z in L2(R). These subspaces are

nested such that,

. . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . .
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The subspaces are constructed such that they have a trivial intersect and a dense

union,

∩j∈ZVj = {0}, ∪j∈ZVj = L2(R).

The hierarchical structure of the subspaces means that if we define a function on one

of the subspaces then we can use a dilation operation to transform the function such

that it is contained within a different subspace. I.e.,

f(x) ∈ Vl ⇔ f(2jx) ∈ Vl−j ∀j ∈ Z. (2.15)

If we instead use a translation operator then the function remains in the same sub-

space,

f(x) ∈ Vj ⇔ f(x− k) ∈ Vj ∀k ∈ Z. (2.16)

The different subspaces therefore allow us to view the same function, f , with different

levels of dilation.

Another property of the subspaces is that there exists a scaling function φ ∈ V0,

the integer transforms of which will form an orthonormal basis of V0. In other words

any function, f(x) ∈ V0 can be represented as a linear combination of the integer

transforms of φ,

f(x) =
∑
k

ckφ(x− k),

for some set of coefficients {ck}. Furthermore if we use the conditions in equations

(2.15) and (2.16) then it is easy to show that {φ(2−jx−k) : k ∈ Z} is an orthonormal

basis of Vj. It is also possible to show that since V0 ⊂ V−1 then we can express φ as
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a linear combination of the functions φ(2x− k),

φ =
∑
k∈Z

hk
√

2φ(2x− k),

where {hk} is a set of coefficients which are specific to the function φ.

2.4.2 Wavelet Basis Functions

Next we outline the main aspects of a wavelet basis and certain properties which make

it a suitable choice for representing a nonstationary series. More details of this can

be found in Vidakovic (1999) or Nason (2008).

The starting point for any wavelet basis is the mother wavelet, ψ. This function

can be used to derive an orthonormal wavelet basis. Unlike the Fourier basis which

is built using sinusoidal functions there are many different mother wavelets which

can be used. In this thesis we will focus on wavelets from two families defined by

Daubechies (1988). These families are referred to as “extremal phase” and “least-

asymmetric” wavelets. More details of these families can be found in Daubechies

(1992) or Vidakovic (1999). Within these families the different wavelet functions are

characterised by the number of vanishing moments, N ∈ N. A wavelet function with

N vanishing moments must satisfy the following properties;

1. ψ(x) ∈ L∞(R). Additionally if N > 1 then dn

dxn
ψ(x) ∈ L∞(R) for all n ≤ N .

2. ψ(x) and its derivatives up to order N must vanish rapidly as x→ ±∞.

3. For all k ∈ {0, . . . , N}, ∫ ∞
−∞

xkψ(x) dx = 0.
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The second property ensures that the wavelet has compact support. This is in contrast

to the standard Fourier exponential which does not vanish asymptotically. As we will

demonstrate in Section 2.5 compact support is a useful property when representing

nonstationary series. Some examples of Daubechies wavelets with different vanishing

moments are shown in Figure 2.3.
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Figure 2.3: Some examples of Daubechies Wavelets

An orthonormal basis can be derived from the mother wavelet using dilation and

translation operators. These are represented by the coefficients j and k respectively.

The set of wavelet basis functions is therefore labelled as {ψj,k(x)}j,k∈Z where,

ψj,k(x) = 2−j/2ψ(2−jx− k). (2.17)

Looking at equation (2.17) we see that dilation can be considered as a stretching of

the basis function. The parameter j is generally referred to as the level or scale. A

higher value of j increases the support length of the function and gives it a longer

oscillation period. In this way the dilation coefficient is similar to the frequency, ω, of

the Fourier basis with higher values of j roughly corresponding to lower frequencies.

In the wavelet world lower levels may also be referred to as finer scales and higher
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levels as coarser scales. The translation operation changes the position of the wavelet

function. This allows the basis to be localised in time as well as frequency. Using this

basis we can represent a zero mean function f(x) ∈ L2(R) as a linear combination of

these basis function,

f(x) =
∞∑
j=1

∞∑
k=−∞

dj,kψj,k(x), (2.18)

where {dj,k} is the set of wavelet detail coefficients. In the next section we briefly

introduce various approaches for calculating these coefficients for discrete time series.

2.4.3 Discrete Wavelet Transforms

Discrete Wavelet Transform: The first type of wavelet transform we describe is

the standard Discrete Wavelet Transform (DWT), proposed by Mallat (1989a). Let

Xt be a discrete time series for time points t ∈ {0, . . . , T − 1} where T = 2J for some

J ∈ N. For a series of this length the coarsest level which can be computed is level

j = J . When taking the DWT of this series we calculate two sets of coefficients the

detail coefficients, {dj,k}, and the smooth coefficients, {cj,k}. The finest level of the

smooth coefficients can be computed directly from the series with coarser levels being

computed recursively.

The formula for calculating the smooth coefficients is given as follows,

c1,k =
∑
n

hn−2kXk,

cj+1,k =
∑
n

hn−2kcj,n for j ∈ {1, . . . , J}.

The set {hk} are low pass filter coefficients which are specific to the mother wavelet
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used for the transform. For level j ∈ {1, J} the DWT calculates coefficients for

locations k ∈ {0, . . . , 2J−j−1}. The number of coefficients consequently decreases for

coarser levels. A transform with this property is known as a decimated transform.

Similarly the detail coefficients are calculated as follows,

d1,k =
∑
n

gn−2kXk,

dj+1,k =
∑
n

gn−2kcj,n for j ∈ {1, . . . , J}, (2.19)

where {gk} are the high pass filter coefficients. These are again specific to the wavelet

function being used and can be calculated from the low pass coefficients as,

gk = (−1)kh1−k. (2.20)

A pictorial representation of the algorithm can be seen in Figure 2.4

c
gk d

hk c
gk d

hk ... c
gk d

hk c
gk d

hk c

2,k

1,k

1,k

J,0

J,0
J-1,k

J-1,k

J-2,k

0,k

Figure 2.4: The procedure for computing coefficients from the original series

The DWT is an orthogonal transform. Consequently the inverse DWT can be

computed using the following formula,

Xt =
∑
k

ht−2kc1,k +
∑
k

gn−2kd1,k,
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where,

cj,n =
∑
k

hn−2kcj+1,k +
∑
k

gn−2kdj+1,k j ∈ {1, J − 1}.

As this formula shows finer scale smooth coefficients can be calculated using coarser

scale smooth and detail coefficients. Consequently if the coefficients of a series are

computed up to level j0 ≤ J then the series can be recovered exactly using only the

smooth coefficients for scale j0 and the detail coefficients for the scales j ∈ {1, . . . , j0}.

If the transform is computed up to level J then the only smooth coefficient which is

needed for the inversion is cJ,0. An example of the detail coefficients of the DWT of

a time series is shown in Figure 2.5.
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(b) DWT Detail Coefficients.

Figure 2.5: Discrete Wavelet Transform of a time series.

The plot in Figure 2.5(b) shows the detail coefficients from a DWT of the series

in Figure 2.5(a). The y-axis denotes the wavelet levels from the finest level, j = 1,

to the coarsest, j = 7. The x-axis denotes the location (or sequence order). The

lengths of the vertical lines corresponds to the size of the detail coefficient at that
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scale and location. It is interesting to see how the features of the series show up in

the coefficients. For example the dip in the series just before time point u = 0.6

corresponds to a relatively large coefficient at level j = 5 in Figure 2.5(b).

Non Decimated Wavelet Transform: In the DWT described above the number

of coefficients in each scale decreases as j increases. This is because at each scale the

wavelet coefficients are only calculated for half of the possible locations. It is only

by convention that in equation (2.19) we select the even sequence of locations, 2k, as

opposed to the odd sequence, 2k − 1. Clearly this raises questions about what extra

information might be gained by considering both the odd and even locations. The

non-decimated wavelet transform, NDWT, described in Nason and Silverman (1995)

addresses this issue.

Under the NDWT, wavelet coefficients are calculated for all possible locations,

consequently for a discrete time series of length T each level will have coefficients for

locations k ∈ {0, . . . , T − 1}. Some of the other benefits of the NDWT are that the

transform is translation invariant. If the time points of Xt are shifted in time then

the coefficients will be shifted in location but will be otherwise unchanged. Under

the NDWT it is also easier to relate locations in the wavelet domain to time points

as the number of locations in a scale is always equal to the number of time points.

An example of the NDWT applied to a time series is shown in Figure 2.6, the series

is the same as in Figure 2.5(a). Again by comparing the plots in Figure 2.6 we

can see how features in the series are represented by the coefficients. Comparing the

NDWT coefficients with the DWT coefficients in Figure 2.5(b) we see that the NDWT
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Figure 2.6: Non Decimated Wavelet Transform of a time series.

coefficients give much more information, for example the dip in the series just before

time point u = 0.6 corresponds to several large coefficients in Figure 2.6(b) across a

range of scales.

Having T coefficients for each scale does mean that a series will be represented by

up to T log T coefficients. Clearly this is an overcomplete representation which is a

consequence of the non-decimated wavelet basis not being orthonormal.

Wavelet Packet Transform: The final wavelet transform we introduce, for com-

pleteness, is the wavelet packet transform introduced by Coifman and Wickerhauser

(1992). Wavelet packets are a generalisation of the ordinary DWT. Recall from Fig-

ure 2.4 in the DWT algorithm the filters h and g are applied to the smooth coefficients,

cj,k, in order to calculate the smooth and detail coefficients for the next coarsest level.

The wavelet packet transform has an additional step whereby the h and g filters are
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also applied to the detail coefficients to produce an additional set of smooth and detail

coefficients. Clearly, like the NDWT, the wavelet packet transform is overcomplete.

In order to preserve the orthogonal structure of the transform Coifman and Wicker-

hauser (1992) proposed the best basis algorithm to identify which coefficients are best

for representing the series.

2.5 Wavelets in Time Series

In the previous section we introduced various forms of the wavelet transform. In this

section we describe a nonstationary time series model which is built on a wavelet

basis, namely the locally stationary wavelet model. We also summarise some recent

applications of this modelling approach.

2.5.1 Locally Stationary Wavelet model

Nason et al. (2000) introduced the locally stationary wavelet (LSW) model to model

time series which have smoothly changing spectral properties. The general form of

this model is summarised below.

Definition 2.3 Let {Xt}t=0,...,T−1 be a univariate time series of length T = 2J . Also

let Wj(u) be a transfer function and {ξjk} be a set of independent standard Gaussian

increments. Finally let {ψjk(t)} be the set of discrete nondecimated wavelets. The

series Xt can then be represented as,

Xt =
∞∑
j=1

∑
k

Wj(k/T )ψjk(t)ξjk. (2.21)
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The transfer function, Wj(u), is a Lipschitz continuous function which controls the

contribution each wavelet decomposition level makes to the overall variance of the

series at a particular rescaled time point u. It therefore controls the variance and

autocovariance properties of the series. Other assumptions, which restrict the transfer

function to be finite, are are also made, these are detailed in Definition 2.1 of Nason

et al. (2000).

Nason et al. (2000) establish that the autocovariance structure of a series can be

represented uniquely (up to a choice of wavelet function) in terms of the evolutionary

wavelet spectrum (EWS). The EWS for level j and rescaled time point z is defined

in terms of the transfer function as follows,

Sj(u) = |Wj(u)|2 . (2.22)

The property of uniqueness makes the EWS a useful quantity for analysing the auto-

covariance properties of the series. The autocovariance function of the series can be

written explicitly in terms of the EWS in a similar way to the Fourier spectrum in

equation (2.2). The nonstationary nature of the EWS means that we are no longer

dealing with the global autocovariance function but rather the local autocovariance

(LACV) function defined as, c(z, τ) = cov (Xz, Xz−τ ).

To write the EWS in terms of the LACV we must first introduce the autocovariance

wavelet, Ψj(τ) =
∑

k ψj,k(0)ψj,k(τ), as defined by Nason et al. (2000). The LACV

can then be written as,

c(z, τ) =
∞∑
j=1

Sj(z)Ψj(τ). (2.23)
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It is also possible to reverse this relationship and write the EWS in terms of the LACV.

To do this we must also introduce the autocorrelation wavelet inner product matrix,

A, the j, l-th entry of this matrix is, Ajl =< Ψj,Ψl >=
∑

τ Ψj(τ)Ψl(τ). The matrix

A was introduced by Nason et al. (2000) and further details about the properties of

this matrix and its construction can be found in Eckley and Nason (2005). The EWS

can then be expressed as,

Sj(z) =
∑
l

A−1jl
∑
τ

c(z, τ)Ψl(τ). (2.24)

As a general rule Nason et al. (2000) state that if there is high covariance between

the data points Xk and Xk−τ then Sj(k/T ) should be large for a value of j which

increases with τ . Intuitively this means that rapid variations in the series correspond

to finer levels while slow variations correspond to coarser levels.

Example: To illustrate the role of the transfer function in controlling the autoco-

variance properties of the series we recreate a simulated example from Nason et al.

(2000). The wavelet function used for this example is the Haar wavelet. This wavelet

function is a simple step function and is shown in Figure 2.3(a). It is possible to

show that a Haar LSW process where the transfer function is constant and nonzero

for level j is equivalent to a moving average (MA) process of order 2j − 1. If the level

at which the EWS is nonzero is permitted to change over time then the order of the

MA process will also vary over time. For our example the EWS is chosen such that

the process will initially be an MA(1) before switching to an MA(3) then MA(7) and

finally MA(15). The true EWS of this process is shown in Figure 2.7(a), a simulated

series with this true EWS is shown in Figure 2.7(b).
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(a) An example of an EWS for a concatena-

tion of MA processes.

0 100 200 300 400 500

−
3

−
2

−
1

0
1

2
3

Time, t

(b) One realisation of this process, vertical

lines indicate the transitions between pro-

cesses.

Figure 2.7: An example of an EWS and one realisation of it.

Looking at Figure 2.7(b) it is easy to see how the changing EWS affects the series

autocovariance. Initially the nonzero elements of the EWS are confined to the lowest

level, which corresponds to high frequencies. This leads to autocovariances at short

lags only which leads to rapid changes in the value of the series. Towards the end of the

series the EWS becomes nonzero for higher levels, corresponding to lower frequencies.

This leads to nonzero autocovariance for higher lags and consequently changes in the

series happen at a much slower rate.

Estimating the EWS The procedure for estimating the EWS is similar to the

procedure for estimating the Fourier spectrum. The first step is to calculate the set

of wavelet detail coefficients, dj,k, by taking a nondecimated wavelet transform of the
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series as described in Section 2.4.3. The raw wavelet periodogram for level j and

location k is defined as Ijk = |dj,k |2.

Nason et al. (2000) establish the expectation and variance properties of the raw

wavelet periodogram as,

E
[
Ij[zT ]

]
=
∑
l

AjlSj(z) +O(T−1),

Var
{
Ij[zT ]

}
=2

{∑
l

AjlSl(z)

}2

+O(2j/T ).

Here Ajl are the elements of the autocorrelation wavelet inner product matrix defined

previously. Looking at these properties we see that the raw wavelet periodogram is

both biased and inconsistent. Nason et al. (2000) show that asymptotic consistency

can be achieved by smoothing the raw wavelet periodogram. To this end various

smoothing methods can be used. For example Nason et al. (2000) choose to use non-

linear wavelet shrinkage, other methods for smoothing the wavelet periodogram can

be found in Fryzlewicz and Nason (2006) and Fryzlewicz (2008).

The periodogram bias can be corrected using the inverse of A. The corrected

periodogram is therefore defined as, Ljk =
∑

lA
−1
jl I

l
k. It is simple to show that this

corrected periodogram is an unbiased estimator of the EWS. In principle the smooth-

ing and basis correction steps can be applied in either order and the asymptotic

properties of the final estimator will not be affected. Nason et al. (2000) suggest

applying the smoothing step first as the distributional properties of the raw wavelet

periodogram are well understood and so can be used to aid the choice of smoother.

The properties of the raw and corrected periodogram are illustrated in Figure 2.8.

Here we have simulated 100 series from the true EWS shown in Figure 2.7(a). Figure
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2.8(a) shows the mean of the 100 raw periodogram calculated from the 100 simulated

series. It is easy to see the effect of the bias of the estimator. For example at the end

of the series the only true nonzero power is in level j = 4 however the periodogram is

clearly nonzero for levels j = 3 and 5. Figure 2.8(b) shows the mean of 100 corrected

periodograms calculated from the same 100 simulated series. It is clear that the

correction has removed the bias which was present in the raw periodogram and the

resulting estimate is much closer to the true EWS.
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Figure 2.8: An example of correcting the Raw Periodogram to reduce power leakage.

Wavelet Coherence Building upon the univariate LSW framework Sanderson et al.

(2010) introduced a bivariate extension which includes a first definition of LSW co-
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herence. The two channels of a bivariate LSW series are represented as follows,

X1
t =

∞∑
j=1

∞∑
k=−∞

W
(1)
j (k/T )ψj,t−kξ

(1)
j,k ,

X2
t =

∞∑
j=1

∞∑
k=−∞

W
(2)
j (k/T )ψj,t−kξ

(2)
j,k

It is easy to see that when viewed individually each channel of the series has the

same form as the univariate LSW model defined in equation (2.21). The main dif-

ference with the bivariate LSW comes via the set of random innovations {ξ(1)j,k} and

{ξ(2)j,k}. Individually both sets of innovations have the same distributional properties

as those in equation (2.21). However, in addition Sanderson et al. (2010) also require

that they have the following covariance properties: cov
(
ξ
(i)
j,k, ξ

(i)
j′,k′

)
= δj,j′δk,k′ and

cov
(
ξ
(1)
j,k , ξ

(2)
j′,k′

)
= δj,j′δk,k′ρj(k/T ), thereby introducing a dependence structure be-

tween the bivariate signal components. Sanderson et al. (2010) call this dependence

the coherence.

The autocovariance of each channel of the series is characterised by its own EWS,

S
(1)
j (u) and S

(2)
j (u). Additionally the covariance between the channels is characterised

by the evolutionary wavelet cross-spectrum, Cj(z), which is defined as,

Cj(u) = W
(1)
j (u)W

(2)
j (u)ρj(u).

The cross covariance between the two channels at rescaled time point u and lag τ is

denoted as c(1,2)(u, τ). This is related to the cross-spectrum as,

c(1,2)(u, τ) =
∞∑
j=1

Cj(u)Ψj(τ),

mirroring the relationship between the EWS and the autocovariance in the univariate

setting.
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The cross spectrum can be estimated in a similar way to the EWS. Sanderson

et al. (2010) define the raw cross-periodogram as, I
(1,2)
j,t = d

(1)
j,t d

(2)
j,t . They show that

the cross-periodogram has the following properties,

E
[
I
(1,2)
j,t

]
=
∞∑
l=1

AjlW
(1)
l (t/T )W

(2)
l (t/T )ρl(t/T ) + 2jO(T−1),

Var
{
I
(1,2)
j,t

}
=
∞∑
l=1

AjlS
(1)
l (t/T )

∞∑
l′=1

Ajl′S
(2)
l′ (t/T ),

+

{
∞∑
i=1

AjlW
(1)
l (t/T )W

(2)
l (t/T )ρi(t/T )

}2

+ 2jO(T−1).

The raw cross-periodogram therefore suffers from the same problems of bias and in-

consistency as the (univariate LSW) raw periodogram. This can be overcome by

smoothing and correcting to produce an asymptotically unbiased and consistent esti-

mate.

The wavelet coherence can be written in terms of the two EWS’ and the cross

spectrum,

ρj(u) =
Cj(u)[

S
(1)
j (u)S

(2)
j (u)

] 1
2

. (2.25)

The wavelet coherence takes a value on the interval, [−1, 1]. This is distinct from

the Fourier coherence which is defined to be always positive. As such the wavelet

coherence is more similar to Fourier coherency however for the remainder of this

thesis we will adopt the convention of Sanderson et al. (2010) and refer to ρj(u) as

wavelet coherence.

The wavelet coherence can be estimated using the estimated EWS for the two
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channels and the estimated cross-spectrum as follows,

ρ̂j(t/T ) =
Ĉj(t/T )[

Ŝ
(1)
j (t/T )Ŝ

(2)
j (t/T )

] 1
2

. (2.26)

The method of Sanderson et al. (2010) is restricted to only cover bivariate time

series and as such cannot be used to answer questions relating to more than two com-

ponents such as those raised at the end of Section 2.2.2. Their particular construction

of the model also requires information about the second order structure to be encoded

separately in the random elements and the transfer functions.

2.5.2 Applications of the LSW Model

We conclude our review of the LSW approach by summarising recent developments in

the LSW literature during the last few years. In particular we focus on the key devel-

opments which have been made in the areas of LSW forecasting, test of stationarity,

classification and changepoint detection.

Forecasting: The first application of the LSW model which we discuss is the Fore-

casting of time series. The use of the LSW model for forecasting was introduced by

Fryzlewicz et al. (2003). They point to the problem of predicting future observations

for nonstationary series where there is only a short sections of homogeneous structure

at the end of the observed series. The LSW model is suited for such a scenario as it

does not assume stationary in the autocovariance structure.

The forecasting procedure which they propose is based on a linear predictor. Given

the LSW series Xt which is observed at time points t ∈ {0, 1, . . . , T − 1}, Fryzlewicz

35



et al. (2003) define the h-step ahead predictor as,

X̂t−1+h =
t−1∑
s=0

b
(h)
t−1−sXt, (2.27)

where the coefficients b
(h)
t−1−s;T are chosen to minimise the mean square prediction

error: MSPE
(
X̂t−1+h, Xt−1+h

)
= E

[
X̂t−1+h −Xt−1+h

]2
. They establish that the

MSPE of the one step ahead forecast can be expressed in terms of the vector of

coefficients bt = [b
(1)
t−1, . . . , b

(1)
0 ,−1] and the matrix Σt which is the covariance matrix

of X0,T , . . . , Xt−1. The MSPE is then given by: MSPE
(
X̂t, Xt

)
= b′tΣtbt. In order

to apply this prediction to real data the coefficients bt must be estimated.

Since the true covariance matrix is not known, Fryzlewicz et al. (2003) estimate it

using the matrixBt, the (m,n)-th element of which is given by:
∑J

j=1 Sj
(
m+n
2T

)
Ψj(n−

m), where Sj(u) is the EWS for Xt which can be estimated using the methods de-

scribed in Section 2.5.1. Fryzlewicz et al. (2003) then show, under some assumptions

on the covariances and the spectrum, that MSPE
(
X̂t, Xt

)
= b′tBtbt(1 + OT (1)).

They also establish that the set of coefficients, {b(1)s }, which minimises the MSPE

must be the solution to the following set of linear equation,

t−1∑
m=0

b
(1)
t−1−m;T

{
J∑
j=1

s

(
m+ n

2T

)
Ψj(m− n)

}
=

J∑
1

Sj

(
t+ n

2T

)
Ψj(t− n).

It is possible to invert this system of equations and thus calculate the coefficients

needed to make a one step ahead prediction. A more general h-step ahead prediction

is also covered by Fryzlewicz et al. (2003).

A Test of Stationarity: As has been discussed previously it is important that any

nonstationarity is taken into account when analysing a time series. It is therefore
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desirable to be able to test a series to establish whether or not it is stationary. Such

a test was introduced by Nason (2013). The test makes use of the LSW model

and is able to not only identify if the series is nonstationary but also identify the

locations at which such points of nonstationary behaviour occur. Their method has

been implemented in R using the locits package. For a time series Xt with true EWS

Sj(u) Nason (2013) define the function βj(u) as,

βj(u) =
∞∑
l=1

AljSl(u). (2.28)

As shown in Section 2.5.1 this is the expected value of the raw wavelet periodogram,

Ij,uT . Clearly if Xt is a second order stationary series then Sj(u) and therefore βj(u)

will be constant over time for all values of j. It was noted by von Sachs and Neumann

(2000) that if βl(u) is constant for all values of u then its Haar wavelet coefficients,

v
(l)
i,p will be zero for all values of i and p. These coefficients are calculated as: v

(l)
i,p =∫ 1

0
βl(u)ψHi,p(u) du, where ψHi,p(u) is the Haar wavelet function shown in Figure 2.3(a).

The true function βj(u) is generally not known and so is replaced by its estimate,

Ij,uT , to give the estimated Haar coefficients v̂
(j)
i,p .

The test statistics for the test of stationarity is chosen to be, T
(l)
i,p = v̂

(l)
i,pσ̂

(l)−1
i,p ,

where σ̂
(l)
i,p is the estimated standard deviation of the Haar wavelet coefficients. Nason

(2013) show that for a series of length T this standard deviation is estimated as,

σ̂
(l)2
i,p = 2T−1I2l,〈1,T 〉

∫ 1

0

ψHi,p(u)2 du = 2T−1I2l,〈1,T 〉,

where, I2l,〈1,T 〉 = T−1
∑

t I
2
l,t. Under the null hypothesis, H0, the coefficient, v

(l)
i,p, is zero

and the test statistic, T
(l)
i,p , follows a standard normal distribution. The null hypothesis

can therefore be evaluated by comparing the test statistic to a critical value in the
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usual way. Since there are many different Haar coefficients which need to be tested this

is a multiple hypothesis test, Nason (2013) suggest using either Bonferroni correction

or the false discovery rate, FDR, procedure of Benjamini and Hochberg (1995) to

control the rate of false positives. If the null hypothesis is rejected for coefficient v
(l)
i,p

then the values of i, p and l will yield information about the region in the time and

frequency decomposition of Xt which contains the nonstationarity.

Time Series Classification: The next application which we will describe is the

classification of time series. We will first describe the LSW based method of Fry-

zlewicz and Ombao (2009) and then describe extensions to this method found in

Krzemieniewska et al. (2014). We assume that a time series Xt will belong to one of

G different classes where G is known. It is assumed that all series which belong to

the same class will have the same underlying LSW process, in other words a series

which belongs to class Πg will have a LSW representations with EWS S
(g)
j (u).

To estimate the EWS for a particular class Fryzlewicz and Ombao (2009) assume

that a set of training data exists such that there are Ng independent series belonging

to class Πg. The corrected wavelet periodogram is then calculated for each of the

series in the training set, with the n-th series belonging to class Πg denoted as Lg,nj,k .

These periodograms are then used to estimate the spectrum as follows, Ŝ
(g)
j (k/T ) =

Ng
−1∑Ng

n=1 L
g,n
j,k .

To better distinguish between classes Fryzlewicz and Ombao (2009) suggest us-

ing a subset of the coefficients of the EWS denoted as M. This subset is cho-

sen based on a divergence measure. For the case of G = 2 this is defined as,
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∆(j, k) =
[
S
(1)
j (k/T )− S(2)

j (k/T )
]2

. The divergence measures is calculated for all

possible values of j and k and ordered. The subset M contains a prespecified pro-

portion of timescale indices which have the highest divergence values.

A series with unknown class membership, Xt, can be classified by computing the

squared quadratic distance, Dg, between its corrected periodogram, Lj,k, and the

estimated EWS for each class, Dg =
∑

(j,k)∈M{Lj,k − Ŝj,k}2. The series is therefore

classified in the class corresponding to the lowest value of Dg.

As an extension to this work Krzemieniewska et al. (2014) note that the coeffi-

cients with the highest divergence may not necessarily produce the most consistent

classification. They suggest an alternative divergence measure ∆̃(j, k) which is related

to ∆(j, k) by the formula,

∆̃(j, k) = ∆(j, k)/σ̂2
j,k,

where σ̂2
j,k is the variance of Lj,k. The idea being the most divergent and stable

coefficients are used in a classification approach. In addition to this new divergence

measure Krzemieniewska et al. (2014) also modify the distance measure such that:

D̃g =
∑

(j,k)∈M

{
Lj,k−Ŝ

(g)
j (k/T )

}2

σ̂2
j,k

. In simulation studies they demonstrate that these

modifications lead to an increase in classification accuracy compared to Fryzlewicz

and Ombao (2009)

Changepoint Detection: The final application we focus on is the detection of

changpoints in the autocovariance structure of a time series. This problems has pre-

viously been studied by Davis et al. (2006) and Gombay (2008) but we will focus

on the LSW based method of Killick et al. (2013). Their method assumes that a
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series Xt = {X0, . . . , Xn−1} is Gaussian. This assumption is valid if the set of random

innovations {ξj,k} from equation (2.21) are Gaussian. The authors begin by defining

a hypothesis test for a single autocovariance changepoint. The null hypothesis, H0,

and alternative, H1, are defined as follows,

H0 : cov (X0, X0−ν) = cov (X1, X1−ν) = . . . = cov (Xn−1, Xn−1−ν) = c0,ν , ∀ν ≥ 0,

H1 : c1,ν = cov (X0, X0−ν) = . . . = cov (Xτ , Xτ−ν)

6= cov (Xτ+1, Xτ+1−ν) = . . . = cov (Xn−1, Xn−1−ν) = cn,ν , ∀ν ≥ 0, (2.29)

where ν is the autocovariance lag. The null hypothesis is equivalent to the series being

second order stationary. In the LSW representation of Xt a second order stationary

series will have an EWS which is constant over time and so, W 2
j (k/n) = γj at every

scale j. The alternative hypothesis is equivalent the the series being split into two

second order stationary segments. Clearly the hypotheses defined in equation (2.29)

can be written as,

H0 :W 2
j

(
0

n

)
= W 2

j

(
1

n

)
= . . . = W 2

j

(
n− 1

n

)
= γ0,j, ∀j,

H1 :γ1,j = W 2
j

(
0

n

)
= . . . = W 2

j

(τ
n

)
6= W 2

j

(
τ + 1

n

)
= . . . = W 2

j

(
n− 1

n

)
= γn,j,

(2.30)

for some j ∈ {1, 2, . . .}.

In order to perform the hypothesis test Killick et al. (2013) express the likelihood

of a Gaussian LSW series in terms of the transfer function. Let x = {x1, . . . , xn} be

observations of an LSW process with Gaussian innovations. The log-likelihood for this

series can be expressed as: `(W |x) = n
2

log 2π + 1
2

log |ΣW | − 1
2
x′Σ−1W x. Consequently
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using equation (2.23) the elements of the variance covariance matrix, ΣW , can be

expressed as,

ΣW (k, k′) = cov (Xk, Xk′) =
∑
l,m

W 2
l

(m
n

)
ψl,m−kψl,m−k′ .

Using this form of the log-likelihood Killick et al. (2013) define a likelihood ratio test

statistic for the single changepoint test as,

λ = max
J<τ<n−J

{
log
∣∣∣Σ̂0

∣∣∣+ x′Σ̂−10 x− log
∣∣∣Σ̂1

∣∣∣− x′Σ̂−11 x
}
.

Here Σ̂0 and Σ̂1 are the maximum likelihood estimates of the variance covariance

matrix under the null and alternative hypotheses respectively. These estimates are

defined as,

Σ̂0(k, k
′) =

∑
l

∑
m

γ̂0,lψl,m−kψl,m−k′ ,

Σ̂1(k, k
′) =

∑
l

[∑
m≤τ

γ̂1,lψl,m−kψl,m−k′ +
∑
m>τ

γ̂n,lψl,m−kψl,m−k′

]
.

Using the above test statistic a changepoint is deemed significant if λ > c for some

pre-defined constant c.

The test described above can be extended to a multiple changepoint setting using

various search algorithms such as Binary Segmentation introduced by Scott and Knott

(1974).
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Chapter 3

Estimating time-evolving partial

coherence between signals via

multivariate locally stationary

wavelet processes
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Abstract

We consider the problem of estimating time-localized cross-dependence in a collection

of non-stationary signals. To this end we develop the multivariate locally stationary

wavelet framework which provides a time-scale decomposition of the signals and thus

naturally captures the time-evolving scale-specific cross-dependence between compo-

nents of the signals. Under the proposed model, we rigorously define and estimate

two forms of cross-dependence measures: wavelet coherence and wavelet partial coher-

ence. These dependence measures differ in a subtle but important way. The former

is a broad measure of dependence which may include indirect associations, i.e. depen-

dence between a pair of signals that is driven by another signal. Conversely, wavelet

partial coherence measures direct linear association between a pair of signals, i.e. it

removes the linear effect of other observed signals. Our time-scale wavelet partial

coherence estimation scheme thus provides a mechanism for identifying hidden dy-

namic relationships within a network of non-stationary signals, as we demonstrate on

electroencephalograms recorded in a visual-motor experiment.
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3.1 Introduction

Historically much of the literature on non-stationary signals is focused on the univari-

ate setting. For reviews of this area see Cohen (1989); Dahlhaus (2012); Daubechies

(1990); Kayhan et al. (1994); Kumar and Fuhrmann (1992); Priestley (1988) and ref-

erences therein. However with advanced data collection devices such as those used

in the medical and mobile sectors, there is a need for rigorous approaches to assess

and confirm time-localized direct vs. indirect dependence (or lack thereof) between

signals. It is often difficult to infer dynamic cross-dependence between components of

multivariate signals such as the multi-channel EEG collected during a visual-motor

task (see Figure 3.1) which we will revisit later.
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2

0
2

4

Time

Figure 3.1: Plot of a 4-channel EEG.

We consider precisely this challenge, developing a novel approach for characterizing

and estimating cross-dependence between non-stationary signals having dynamic and

complex cross-dependence structures. In doing so, we highlight two specific forms of
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dependence which can be estimated between pairs of signals within a multivariate

collection. The simplest form is that of the (time-dependent) coherence between two

signals. This describes the linear relationship between two signals - more precisely it

is a time-evolving squared cross-correlation between filtered signals, Ombao and Van

Bellegem (2008). However, in so doing we may also include indirect associations driven

by another observed signal in the collection. The alternative is partial coherence. This

provides a measure of the direct linear relationship between two signals over time, thus

removing the (linear) effects of other observed signals. The difference between direct

vs indirect associations is illustrated in Figure 3.2. This measure has broad potential

scientific impact, for example the the neuroscience and genomic communities are

keenly interested in such associations.

Figure 3.2: Indirect vs. Direct Associations Between Signals. Left: X and Y are

indirectly linked through Z. Right: X and Y are directly linked. Coherence between

X and Y is non-zero for both networks. Partial coherence is non-zero for the network

on the right (with direct link) but zero for the left network because the link between

X and Y is indirect.
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Previous Work In recent years, several papers have appeared trying to address the

non-stationary modelling challenge associated with such large and complex signals. In

Dahlhaus (2000a), Dahlhaus presents a Fourier based model for multivariate locally

stationary signals with time-varying spectral structure. A similar approach was also

developed by Walden and Cohen (2012). Under the Dahlhaus framework, Ombao and

Van Bellegem Ombao and Van Bellegem (2008) demonstrate that the time-varying

coherence is equivalent to the modulus-squared cross-correlation between filtered seg-

mented signals. Segment sizes are obtained data-adaptively by iteratively increasing

segment lengths as long as the stationarity assumption within each segment is not

violated. Such a data-adaptive windowing approach, however, is computationally de-

manding. An alternative Fourier based approach to model multivariate non-stationary

series is the smooth localized complex exponential (SLEX) model of Ombao et al. Om-

bao et al. (2005). Here the best representation of the signal is selected from the SLEX

library using a complexity-penalized Kullback-Leibler criterion. Although capable of

handling massive signals, the SLEX method is restricted to choosing representations

obtained from temporally-dyadic segmentation. Moreover we note that both Ombao

and Van Bellegem (2008) and Ombao et al. (2005) only develop methods for the es-

timation of coherence which, as we shall show later, can mask understanding of the

direct relationships between pairs of signal components.

Cohen and Walden Cohen and Walden (2010) overcome the limitations of dyadic

temporal splits within SLEX by using a wavelet basis to adapt to nonstationarity in

the spectra of each channel for the case of jointly stationary processes. The assump-

tion of jointly stationary processes is not present in Cohen and Walden (2011) and
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Sanderson et al. (2010) who both use wavelet based models to quantify non-stationary

linear dependence between components of a bivariate non-stationary signals. More

recently, within the more restricted context of changepoint detection of piecewise sta-

tionary signals, Cho and Fryzlewicz (2014) has extended the approach of Sanderson

et al. (2010) to a p-variate setting. However none of these contributions directly ad-

dress the issues that are germane to truly multivariate non-stationary signals (with

three or more components). Specifically, as Koopmans (1964) identified in the sta-

tionary context, one major practical issue is to identify whether the (time-dependent)

connection or cross-dependence between two channels is either (a.) direct or (b.) in-

direct (i.e., driven by another channel or common set of channels). It is this challenge

which lies at the heart of this article.

Our Work: The modelling framework which we propose in this paper is an alter-

native formulation of the model form proposed by Sanderson et al. (2010). The model

proposed by Sanderson et al. (2010) decomposes the spectral and cross-spectral struc-

ture into two different components: the within-channel structure being encapsulated

within the transfer functions whilst the cross-channel structure is contained within

the process innovations. Instead we propose a more parsimonious form, whereby both

spectral components are described within a matrix of transfer functions. Specifically,

to extract cross-dependence structures, we introduce the multivariate locally station-

ary wavelet framework (MvLSW) - which is a stochastic representation that is ideally

suited for non-stationary signals. This framework permits the direct estimation of

both the coherence and partial coherence in a computationally efficient manner. In

addition the framework also permits direct simulation of processes with a specific
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time-scale partial coherence form, including processes with abrupt changes in partial

coherence. This direct simulation is necessary to perform resampling-based inference.

The format of the rest of the paper is as follows. Our main contributions are

developed in Sections 3.2 and 3.3. Specifically, in Section 3.2.1 we develop the mul-

tivariate locally stationary wavelet framework for modelling multivariate signals. We

then introduce the local wavelet spectral matrix as a representation of the properties

of the signals in Section 3.2.2. In Section 3.2.3 we use the MvLSW model to develop

our two key cross-dependence quantities: wavelet coherence and partial coherence.

Section 3.3 gives detail of the estimator for the local wavelet spectral matrix as well

as establishing its asymptotic properties. Finally Section 3.4 provides an example of

how our approach can be used to identify direct time-dependent relationships between

components of a signal which we demonstrate on multi-channel electroencephalograms

(EEGs) recorded during a visual-motor experiment, as well as on simulated data.

3.2 Locally Stationary Wavelet Processes

This section describes the multivariate LSW (MvLSW) modelling framework, together

with various time-scale measures which we introduce to describe the spectral and

cross-spectral behaviour of such non-stationary signals. For completeness we start by

briefly reminding the reader of key aspects associated with univariate LSW theory as

introduced by Nason et al. (2000), their building blocks (discrete wavelets) and the

associated evolutionary wavelet spectrum (EWS).

The key building blocks in constructing LSW processes, discrete wavelets, are
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founded on {hk} and {gk}, the usual low and high-pass quadrature mirror filters

associated with the construction of Daubechies’ compactly supported continuous-

time wavelets. The associated discrete wavelets, ψj = {ψj,0, ψj,1, . . . , ψj,Nj−1} are

vectors of length Nj for scales j ∈ N which can be calculated using the following:

ψ1,n =
∑

k gn−2kδ0,k = gn for n = 0, . . . , N1 − 1 and ψj+1,n =
∑

k hn−2kψj,k, for n =

0, . . . , Nj+1 − 1. Here δ0,k is the usual Kronecker-delta function, and Nj = (2j −

1)(Nh − 1) + 1 where Nh is the number of non-zero elements within the filter {hk}.

The discrete wavelets form the corner-stone of the (univariate) LSW time series model.

Specifically, assume that T = 2J for some J ∈ Z. Then the LSW process, Xt;T , is

defined to be a sequence of (doubly-indexed) stochastic processes having the following

representation in the mean-square sense:

Xt;T =
∞∑
j=1

∑
k

Wj(k/T )ψj,t−kξj,k. (3.1)

As described in Nason et al. (2000), the representation consists of the discrete wavelets;

{Wj(u)}u∈(0,1), a smoothly varying transfer function and {ξj,k}, a collection of zero-

mean, unit-variance uncorrelated random variables. A number of smoothness as-

sumptions are also required on the {Wj(·)} to ensure that the transfer function can

be estimated (see Nason et al. (2000) for details).

The transfer function, Wj(k/T ), provides a measure of the time-varying contri-

bution to the variance at a particular scale, j. Consequently, to describe the power

contained at a given scale and location, Nason et al. (2000) introduce the evolutionary

wavelet spectrum (EWS), Sj(u) = |Wj(u)|2 , for j ∈ N. This can be estimated using

the wavelet periodogram for a one-dimensional non-stationary signal, see Nason et al.
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(2000) for details.

3.2.1 The Multivariate LSW model

We now introduce our multivariate generalization of the LSW framework. In what

follows we will refer to each (univariate) component signal as a channel. Our main

goal is to develop a framework for modeling multivariate non-stationary signals under

which we rigorously define the time-varying second order properties, and in partic-

ular the locally stationary cross-dependence between the different channels. In our

framework we allow individual channels to experience their own uniquely localized

non-stationary behaviour. More importantly we explicitly describe the potentially

locally stationary correlation between channels. Under our model this correlation will

be broken down into contributions from different scales. This is known as the coher-

ence structure. It is important to be able to represent this structure adequately as it

will reveal how the channels relate to each other and how this can change over time.

We start by considering a P -dimensional vector, Xt;T = [X
(1)
t;T , X

(2)
t;T , . . . , X

(P )
t;T ]′,

each element of which is an individual channel of the signal. To represent this sig-

nal under a multivariate model we replace the transfer function, Wj(k/T ), from the

(univariate) LSW model with a P × P matrix of functions, Vj(k/T ), known as the

transfer function matrix. The innovations, {ξjk}, are also replaced by a set of random

vectors, {zj,k} = {[z(1)j,k , . . . , z
(P )
j,k ]′}. The definition of the multivariate LSW model is

then given as follows.

Definition 3.1 The P-variate locally stationary wavelet process {Xt;T}{t=0,...,T−1},
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T = 2J , J ∈ N is represented by,

Xt;T =
∞∑
j=1

∑
k

Vj(k/T )ψj,t−kzj,k, (3.2)

where {ψj,t−k}jk is a set of discrete non-decimated wavelets; Vj(k/T ) is the transfer

function matrix, which is defined to have a lower-triangular form. We assume that

each element of the transfer function matrix is a Lipschitz continuous function with

Lipschitz constants Lj satisfying
∑∞

j=1 2jL
(p,q)
j < ∞; zj,k are uncorrelated random

vectors with mean vector 0 and variance-covariance matrix equal to the P×P identity

matrix.

We will henceforth drop the explicit dependence of the process on T , although natu-

rally it will still be assumed.

Remark. The distributional property of the random elements in Definition 3.1

means that the elements have the following covariance property: cov
(
z
(i)
j,k, z

(i′)
j′,k′

)
=

δi,i′δj,j′δk,k′ . In other words the {z(i)j,k} are random orthonormal increment sequences,

which are themselves uncorrelated. Dependence between channels is encapsulated

only in the transfer function matrix which also controls the contribution to the vari-

ance made by each channel at a particular time within each scale. This differs from the

approach in Sanderson et al. (2010) where the dependence structure is encapsulated

within the innovations z.

Remark. The primary difference between our approach and that of Sanderson et al.

(2010), or indeed the more recent contribution of Cho and Fryzlewicz (2014), is that

in our framework we encapsulate the spectral structure (including cross-channel de-

pendence) entirely within the transfer function matrix. This is in contrast to the
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Sanderson et al. framework, where the spectral structure is encapsulated both within

(i) the transfer functions (spectrum) and (ii) process innovations (cross-channel de-

pendence). As such our framework permits one to estimate the partial coherence in a

straightforward manner, since this structure is entirely embedded within the transfer

function matrix. Computationally there are also benefits to this particular formula-

tion: for example, this approach can be implemented via matrix operations, whilst

in the formulation of [14] one would conduct the estimation scheme on each channel

individually. More importantly, perhaps, it is possible to simulate multivariate time

series with a given partial coherence form directly within this framework. The ability

to perform such simulations means that resampling based inference can be performed

in this setting.

Many different forms of transfer function matrix could be chosen, however for ease

of interpretation we choose for it to have a lower triangular form. The lower triangular

form of Vj(u) makes it very easy to generalize to multiple dimensions. It is also easy

to see how linear dependencies between the channels are produced. If the off diagonal

terms are non-zero then there will be (time-varying) dependence between the series,

however if Vj(u) is diagonal then the channels will be uncorrelated with each other.

Here, we do not estimate Vj(u) but estimate the spectral quantities which we discuss

in the next subsection. Moreover the lower triangular form can represent a general

spectral structure even if the channel order is permuted. This is explained further in

Proposition 3.3.
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3.2.2 Local Wavelet Spectral and Covariance Matrices of Non-

Stationary signals

We next introduce the local wavelet spectral matrix which describes the time-scale

decomposition of power in our multivariate time series. Recall that in the univariate

LSW context the concept of an evolutionary wavelet spectrum describes a time-scale

decomposition of power. Since we are dealing with multivariate signals, and have

replaced the transfer function with a transfer function matrix, we will introduce its

multivariate analog – the local wavelet spectral matrix.

Definition 3.2 Let Xt be a MvLSW signal with associated time-dependent transfer

function matrix Vj(u). Then the local wavelet spectral (LWS) matrix at scale j and

rescaled time u is defined to be,

Sj(u) = Vj(u)V′j(u), (3.3)

where V
′
j(u) denotes the transpose of Vj(u).

Remark. The LWS matrix provides a measure of the local contribution to both the

variance of the channels and cross-covariance between channels made at a particular

time, u, and scale, j. By the construction of Definition 3.2 it is clear that for any given

transfer function matrix the LWS matrix is symmetric and positive semi-definite for

every fixed time-scale combination. The diagonal elements of the LWS matrix are

the spectra of the individual channels of the signals and are denoted S
(p,p)
j (u). The

off diagonal terms, S
(p,q)
j (u), describe the cross-spectra between the series. It is also

natural to consider whether a connection can be established between the LWS matrix
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and the local auto and cross-covariance. We start to explore this connection in the

following definition. However prior to doing so we introduce the discrete autocorrela-

tion wavelet, Ψj(τ), which is defined by Ψj(τ) ≡
∑

k ψj,kψj,k−τ for j ∈ N and τ ∈ Z

(see Eckley and Nason (2005) for further details).

Definition 3.3 Let c(p,p)(u, τ) denote the local autocovariance of channel p at lag

τ and c(p,q)(u, τ) be the local cross-covariance between channels p and q. We can

define these function in terms of the elements of the LWS matrix and the discrete

autocorrelation wavelets,

c(p,p)(u, τ) =
∞∑
j=1

S
(p,p)
j (u)Ψj(τ),

c(p,q)(u, τ) =
∞∑
j=1

S
(p,q)
j (u)Ψj(τ). (3.4)

The following proposition establishes that, up to choice of wavelet, the LWS matrix

is unique for a specified MvLSW model form.

Proposition 3.1 Given the corresponding MvLSW process, the LWS matrix is uniquely

defined.

Proof: See Appendix A.1.

We also consider if under this definition the local auto- and cross-covariance functions

exactly represent the covariance between elements of the signals.

Proposition 3.2 Let c(p,q)(u, τ) denote the local cross covariance stated in Definition

3.3. This function can also be represented, approximately, in terms of the covariance

between elements of the signal because∣∣∣c(p,q)(u, τ) − cov
(
X

(p)
[uT ], X

(q)
[uT ]+τ

)∣∣∣ = O(T−1).
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Proof: See Appendix A.2.

Remark. Given the lower triangular form of the transfer function matrix, Vj(u), it

is natural to ask if the representation is reliant on a certain ordering of the channels

of Xt. It is possible to show that under any permutation of this ordering Xt will have

a MvLSW representation and the spectral properties will be unchanged.

Proposition 3.3 Let Xt be a MvLSW process with LWS matrix, Sj(u). Also let X∗t

be a permutation of Xt such that X∗t = MXt for some permutation matrix M. Then

the LWS matrix of X∗t , S∗j(u) has the form S∗j(u) = MSj(u)M′.

Proof: See Appendix A.3.

3.2.3 Coherence and Partial Coherence within the MvLSW

setting

We now introduce a measure of cross-dependence between different channels at a

particular scale. We can quantify this dependence by defining the wavelet coherence

between channels. For our multivariate series we will define the coherence in terms of

the wavelet coherence matrix.

Definition 3.4 For scale, j, rescaled time point, u ∈ (0, 1), the wavelet coherence

matrix, ρj(u) is defined as,

ρj(u) = Dj(u)Sj(u)Dj(u). (3.5)

Here Sj(u) is the LWS matrix defined previously. We also define Dj(u) to be a

diagonal matrix whose elements are S
(p,p)
j (u)(−1/2).
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The (p, q) element of the wavelet coherence matrix, ρ
(p,q)
j (u), is the coherence

between channels p and q of the series. This individual element can also be expressed

as,

ρ
(p,q)
j (u) =

S
(p,q)
j (u)√

S
(p,p)
j (u)S

(q,q)
j (u)

. (3.6)

Remark. Given this expression it is clear that the coherence between channels will

take a value between -1 and 1 at any given point in time. A value close to ±1 indicates

a strong positive/negative linear dependence between channels at that time and scale.

A value close to 0 shows there is little or no linear dependence between channels. Set-

ting p = q in Equation (3.6) demonstrates that the diagonal elements of ρj(u) are

equal to 1. In Fourier analysis a quantity with these properties would generally be

referred to as coherency however we will follow the terminology of Sanderson et al.

(2010) and refer to it as coherence.

When analyzing the coherence structure of a multivariate signal it may, superfi-

cially, appear that two channels are linked as there is significant coherence between

them. However, it may in fact be the case that there is not a direct link between

them but they are both linked via a third series (see Figure 3.2). To this end we

conclude our modelling framework by introducing the wavelet partial coherence. This

provides a measure of the coherence between two channels after removing the effects

of all other channels. Partial coherence can again be defined in matrix form using the

LWS matrix. The definition of wavelet partial coherence below is analogous to the

Fourier domain definition developed in Dahlhaus (2000b).
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Definition 3.5 We define the matrix Gj(u) = Sj(u)−1 and the diagonal matrix

Hj(u) with elements G
(p,p)
j (u)−(1/2). The wavelet partial coherence matrix at scale,

j, and rescaled time, u, is defined to be

Γj(u) = −Hj(u)Gj(u)Hj(u). (3.7)

The off diagonal terms of this matrix are the partial coherences between channels.

That is the coherence between the channels after the linear effects of all other channels

have been removed.

3.3 Estimation of the MvLSW Spectral Depen-

dence Quantities

In this section we turn our attention to estimating the spectral quantities of a MvLSW

signal. Specifically we first consider the estimation of the LWS matrix before turning

to the estimation of the wavelet coherence and partial coherence which were intro-

duced in Section 3.2.

First, we define the empirical wavelet coefficient vector, dj,k = [d
(1)
j,k . . . , d

(P )
j,k ]′ whose

elements are the empirical wavelet coefficients for each signal channel

dj,k =
T−1∑
t=0

Xtψjk(t). (3.8)

We use the empirical wavelet coefficient vector to produce the raw wavelet periodogram

matrix, Ij,k:

Ij,k = dj,kd
′
j,k. (3.9)
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Moreover, we denote I
(p,q)
j,k to be the (p, q)-th entry of the periodogram matrix where

p, q ∈ {1, . . . , P}. The raw wavelet periodogram matrix is the starting point for

estimating the LWS matrix. In order to achieve a final estimator with the correct

properties we explore the asymptotic properties of the raw periodogram matrix as an

estimator for this quantity. In particular, given the results in the one-dimensional

setting, it is natural to enquire whether the raw wavelet periodogram is biased.

Proposition 3.4 Let {Xt} be a MvLSW signal with underlying LWS matrix, Sj(u),

and empirical wavelet coefficients, {dj,k}. Then

E [Ij,k] =
J∑
l=1

AjlSl(k/T ) +O(T−1) and

Var
{
I
(p,q)
j,k

}
=

J∑
l=1

AjlS
(p,p)
l (k/T )

J∑
l=1

AjlS
(q,q)
l (k/T )

+

(
J∑
l=1

AjlS
(p,q)
l (k/T )

)2

+O(22j/T ),

where Ajl =< Ψj,Ψl >=
∑

τ Ψj(τ)Ψl(τ) for j, l ∈ N is the inner product matrix of

discrete autocorrelation wavelets (see Nason et al. (2000) or Eckley and Nason (2005)

for further details).

Proof: See Appendix A.4.

As in the univariate setting of Nason et al. (2000), the above result establishes that

the raw wavelet periodogram matrix is both asymptotically biased and inconsistent.

The bias has a particular form consisting of entries in the inner product matrix A. In

Cardinali and Nason (2010), the inner product matrix A is established to be invertible

for all Daubechies’ compactly supported wavelets. Consequently, the bias of the raw

wavelet periodogram matrix estimator in Proposition 3.4 can be corrected. However,
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this would still be an inconsistent estimator. Thus, our proposal is to first apply

a smoother on the raw wavelet periodogram matrix and then correct the bias. In

particular, we use a rectangular kernel smoother with window of length 2M + 1 to

produce the smoothed estimator,

Ĩj,k =
1

2M + 1

M∑
m=−M

Ij,k+m. (3.10)

With such an estimator we establish the following result.

Proposition 3.5 Assume that supz∈[0,1] |
∑

τ c(z, τ)| ≤ ∞. Then

E
[
Ĩ
(p,q)
j,k

]
=

J∑
l=1

AjlS
(p,q)
l (k/T ) +O(MT−1) +O(T−1)

Var
{
Ĩ
(p,q)
j,k

}
=O(22j/M) +O(22j/T ).

Proof: See Appendix A.5.

Remark. In the limit, as T,M →∞, Var
{
Ĩ
(p,q)
j,k

}
→ 0. Here, one observes the usual

bias-variance trade-off: increasing M reduces the variance but also increases the bias.

Moreover, with the additional condition thatM/T → 0, then
∣∣∣E [Ĩ(p,q)j,k

]
− E

[
I
(p,q)
j,k

] ∣∣∣ →
0. Thus, one can correct the bias of the smoothed periodogram using the inverse of

the inner product matrix A−1. The final smoothed bias-corrected estimator of the

LWS matrix is then given by

Ŝj,k =
J∑
l=1

A−1jl Ĩl,k. (3.11)

We will use the quantity Ŝj,k to estimate the wavelet coherence and partial co-

herence. Denote the (p, q)-th entry of Ŝj,k to be Ŝ
(p,q)
j,k and let D̂j,k;T be a diagonal

matrix whose elements are (Ŝ
(p,p)
j,k )−(1/2). Then, we define the estimator of the wavelet
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coherence matrix to be,

ρ̂j,k = D̂j,kŜj,kD̂j,k for j ∈ {1, . . . , J}, k ∈ {0, . . . , T − 1}. (3.12)

The (p, q)-th element of ρ̂j,k is the estimated time-varying wavelet coherence between

channels p and q at level j. Next, define Ĝj,k = (Ŝj,k)
−1 and let Ĥj,k be a diagonal

matrix whose elements are (Ĝ
(p,p)
j,k )−(1/2). Then, the estimator of the wavelet partial

coherence matrix is defined to be,

Γ̂j,k = −Ĥj,kĜj,kĤj,k for j ∈ {1, . . . , J}, k ∈ {0, . . . , T − 1}. (3.13)

Thus, the (p, q)-th element of Γ̂j,k is the estimated wavelet partial coherence between

channels p and q. Note that the linear dependence of channels p and q on all the other

channels are removed in the calculation of wavelet partial coherence. Finally we note

that using Slutsky’s theorem Slutsky (1925) it follows immediately that ρ̂j,k and Γ̂j,k

are asymptotically unbiased and consistent estimators of the true wavelet coherence

matrix and wavelet partial coherence matrix, respectively.

3.4 Applications of the Multivariate LSW model

To illustrate our proposed multivariate locally stationary wavelet process (MvLSW)

we now consider two examples. Section 3.4.1 considers a simulated example whilst

Section 3.4.2 presents an analysis of multivariate EEG data recorded during a visual-

motor experiment.
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3.4.1 Simulated Example

We simulate signals using a tri-variate model of the following form, Xt = A1Xt−1 +

A2Xt−2 + ξt, where A1 = 1.51I3, A2 = −0.83I3 and ξt = [ξ1t ξ
2
t ξ

3
t ]
′ ∼ N(0,Σt).

Here Σt varies across time so that the cross-correlation structure changes from one

time region to another. The channels of the series will therefore have a time-varying

coherence structure which is known and constant over frequency. The structure is

such that there is a peak in the spectral power at frequency 3π/16 which corresponds

to the mid point of wavelet level j = 3. We simulated 100 tri-variate signals from

this model. Using the method proposed in Section 3.3 we estimate the coherence and

partial coherence matrices for each simulated signal. In the results reported the Haar

wavelet was used in the analysis, although in other simulations we observed that the

choice of wavelet made little practical difference for this example. For comparison

we also calculate the coherence using both the SLEX method and the method of

Ombao and Van Bellegem (OVB) in Ombao and Van Bellegem (2008). For direct

comparisons, we have calculated these coherence values for the band of frequencies

corresponding to wavelet level j = 3.

Figure 3.3 shows the results of the coherence estimation. In particular we note

that of the three estimation methods, the proposed MvLSW coherence estimation

scheme produces the most faithful overall estimate of the three. Most notably OVB

fails to suitably capture the abrupt change in coherence which occurs within this

simulated example. SLEX performs slightly better than OVB in terms of capturing

the abrupt changes however it fails to consistently match the peaks and troughs of the
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coherence. The exception to this is the coherence between channels 1 and 2, where

the spectral structure is constant. Here SLEX and OVB have both performed better

then our MvLSW method. This is unsurprising given that for this pair the coherence

is stationary. This is because OVB can adaptively choose the size of the window so

that it matches any changes, if present, on the true spectral quantity. Similarly, the

SLEX method chooses the best basis for representing signals and thus can adaptively

select the stationary basis if the signal is indeed stationary. The results of partial
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Figure 3.3: Coherence at level j = 3: truth (solid) and mean estimate of the coherence

obtained from 100 simulations using MvLSW (dotted); SLEX (dotted and dashed)

and OVB (dotted).
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coherence estimation using the proposed method are shown in Figure 3.4. We draw

particular attention to how the wavelet partial coherence estimator is able to capture

quite subtle time-localized changes in partial coherence. Comparison of this approach

with SLEX and OVB equivalents for partial coherence is left as an avenue for future

research, once such methods have been developed in the literature.
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Figure 3.4: Partial coherence at level j = 3. Solid lines represent true values, dashed

lines represent the mean of 100 simulations and the dotted lines denote approximate

95% point-wise confidence intervals.
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3.4.2 EEG Data

Our real data example is a multi-channel electroencephalogram (EEG) recorded from

an experiment in which participants are instructed to move a hand held joystick to

either the left or right. A 64-channel EEG was recorded at a sampling rate of 512

Hertz and then bandpass filtered at (0.02, 100) Hertz. Each recording epoch was

1000 milliseconds; the instruction (left vs right) was given at time t = 0; and the

subject responded with a wrist movement between 350 and 450 milliseconds. Here,

we selected data for one participant and used 4 channels on the right hemisphere

namely FC4 (right fronto-central), FC6 (also right parietal-fronto-central), P4 (right

parietal), C4 (right central). This collection is a subset of the channels in Fiecas

and Ombao (2011) believed to be engaged in visuo-motor tasks. The positions of

these channels are shown in Figure 3.5. Here, we present an analysis of the wavelet

spectral quantities computed for level j = 2 (12.5 − 25 Hertz), which is contained

within the conventional beta band. To study the dynamics within each brain region,

we estimated the time-varying and level dependent LWS by kernel smoothing the

wavelet auto- and cross-periodograms using a smoothing span that was objectively

selected by generalized cross-validated gamma deviance criterion developed in Ombao

et al. (2001). The Daubechies extremal-phase wavelet 10 vanishing moments was used

as the analysing wavelet. We found that by using a smoother wavelet we were able to

better capture the dynamics of the coherence and partial coherence of this recording.

We investigated the dynamics of cross-dependence within the brain network by

estimating the wavelet coherence and wavelet partial coherence. The point estimates
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Figure 3.5: Placement of EEG channels included in analysis.

of the wavelet coherence and partial coherence were computed using the quantities in

the estimated LWS matrix. The approximate 95% pointwise confidence intervals for

coherence and partial coherence were obtained by bootstrap resampling the stochas-

tic component of the MvLSW model. Such an approach was used in Ombao et al.

(2000) for inference on the evolutionary SLEX spectrum. Empirical distributions of

the Fisher-z transformed wavelet coherence and partial coherence values were con-

structed based on B bootstrap replicates. Typically one might use B = 1000 such

replicates. Following ideas from Fourier coherence, see for example Ombao and Van

Bellegem (2008), the wavelet coherence and partial coherence estimates were Fisher-z

transformed in order to stabilize the variance of the estimator. The scale-shift specific

variance of the empirical distribution of the Fisher-z transformed values were extracted

and then utilized to compute the approximate 95% pointwise confidence intervals.

For ease of interpretation these confidence intervals were then back-transformed to
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the scale (−1, 1).
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Figure 3.6: Coherence plot (left) and Partial Coherence plot (right) at level j = 2.

Solid lines represent the estimated values and dashed the approximate 95% point-wise

confidence intervals.

The plots displaying confidence bands on the wavelet coherence (see Figure 3.6(a))

suggest that, for the most part, brain activity captured by the P4 channel exhibited

no linear dependence with brain activity at the central channels namely C4, FC6 and

C4. In contrast, there appears to be a common temporal trend in coherence among

the central channels. Early in the signals (immediately following visual instruction)

there does not seem to be statistically significant connections. However, at about

400 milliseconds (approximately the time the subject responds to the cue by moving),

these central channels become strongly coherent with each other at the beta frequency

band. It is interesting to see these brain dynamics during hand movement.

The natural follow-up question is whether or not the links between the central
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channels established by the coherence plots are direct or indirect (i.e., due to a connec-

tion0 with some common channel). We addressed this question by using the wavelet

partial coherence within the framework of our proposed MvLSW model. In Figure

3.6(b), note that brain activity at FC4 was not directly linked to brain activity at

the C4 channel but the link between FC4 and was FC6 was statistically significant

beginning at around t = 400 milliseconds. Moreover, we observe that there was a

statistically significant direct link between FC4 and FC6 – suggesting that the con-

nection between FC4 and C4 observed in the coherence plot was not direct but was

in fact related to their common link with the FC6 channel.

The results produced by the proposed MvLSW model are similar to the results

from a Fourier-based approach in Fiecas et al. (2010). More importantly, we demon-

strate that our proposed model and cross-dependence measure are able to identify an

interesting result on the small network of central channels that suggest a direct link

between activity at the FC6 channel and each of the FC4 and C4 channels during a

visual-motor activity. This finding certainly requires further scientific experiments es-

pecially in how these direct connections might be crucial to preserving motor function

as well as recovering lost motor function following a major traumatic brain injury. Of

course, this analysis is done only on one subject and one will have to develop a more

complex model that would take into account brain response variation across many

subjects. Nevertheless, the analysis has demonstrated the potential utility and broad

impact of the MvLSW model.
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3.5 Concluding Remarks

In conclusion, we developed a rigorous, wavelet-based modeling framework which can

capture the evolutionary scale-dependent cross-dependence between components of

multivariate signals. An associated estimation theory was also established, demon-

strating the uniqueness and asymptotic consistency of our spectral estimators. The

particular construction which we proposed also permits the identification of time-scale

localized coherence and partial coherence. The proposed wavelet partial coherence

measure, in particular, can prove useful when considering the linear dependence be-

tween a pair of channels as it enables us to decouple the linear effects of other com-

ponents of the multivariate signal.
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Chapter 4

Dynamic Classification of
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Abstract

Methods for the supervised classification of signals generally aim to assign a signal to

one class for its entire time span. In this paper we present an alternative formulation

for multivariate signals where the class membership is permitted to change over time.

Our aim therefore changes from classifying the signal as a whole to classifying the

signal at each time point to one of a fixed number of known classes. We assume

that each class is characterised by a different stationary generating process, the signal

as a whole will however be nonstationary due to class switching. To capture this

nonstationarity we use the recently proposed Multivariate Locally Stationary Wavelet

model. To account for uncertainty in class membership at each time point our goal is

not to assign a definite class membership but rather to calculate the probability of a

signal belonging to a particular class. Under this framework we prove some asymptotic

consistency results. This method is also shown to perform well when applied to both

simulated and accelerometer data. In both cases our method is able to place a high

probability on the correct class for the majority of time points.
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4.1 Introduction

This paper focuses on a supervised signal classification problem for multivariate sig-

nals. The canonical supervised signal classification problem considered within the

literature, see for example Kakizawa et al. (1998); Shumway (2003); Huang et al.

(2004); Sakiyama and Taniguchi (2004); Caiado et al. (2006); Fryzlewicz and Ombao

(2009); Böhm et al. (2010); Liu and Maharaj (2013); Krzemieniewska et al. (2014),

may be briefly summarised as follows: Assume that we are given a nonstationary

signal of unknown class label, then we seek to assign the entire signal to one of Nc

different classes, using training data. The implicit assumption within the above, of

course, is that the underlying process does not switch between classes.

In practice one can conceive of several situations where such a ‘mono-class’ as-

sumption might not be appropriate. For example, the nonstationary signal in question

might be piecewise (second-order) stationary, with each stationary block representing

a particular class structure. To illustrate this we introduce a motivating example

using accelerometer data recorded from a movement experiment, one run of which

is shown in Figure 4.1. The experiment involves a participant performing a series of

activities, namely: walking down a corridor, up a set of stairs and down a set of stairs.

The interest in this setting is not to classify the whole signal, but rather to associate

a class with each particular activity. As such the inference challenge we address in

this article is that of dynamically classifying a nonstationary signal at a given time

point into a particular pre-determined class structure.

The problem of classification of signals has a long history dating back to early work
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Figure 4.1: Tri-axial accelerometer signal.

on the classification of (second-order) stationary (univariate) signals. For overviews of

this area we refer the reader to Shumway (1982). In the nonstationary signal setting

one could use various frameworks including nonstationary adaptations of the station-

ary Fourier basis, see for example Sakiyama and Taniguchi (2004) which adopts the

locally stationary Fourier model in Dahlhaus (1997). An alternative Fourier based

approach is considered by Huang et al. (2004) and Böhm et al. (2010) who adopt

the smooth localised exponentials (SLEX) framework. Of course one need not be

restricted to the Fourier basis. For example, Fryzlewicz and Ombao (2009) and

Krzemieniewska et al. (2014) use the locally stationary wavelet approach of Nason

et al. (2000) for univariate signal classification. In each of these settings the focus is

on classifying a signal into one class, i.e. they do not tackle the problems of nonsta-

tionarity due to class switching. Thus these approaches are inadequate for classifying
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many real systems.

One possible approach to our problem of dynamic classification would be to seg-

ment the signal a priori and then assign each segment to a particular class. Such

an approach is discussed in Krzemieniewska (2013). However such pre-processing can

lead to some potential pitfalls. For example, in the case of a high dimensional signal,

the differences between classes may be driven by only a small proportion of the chan-

nels. This can make segmentation challenging and the overall quality of classification

will rely heavily on the segmentation method used. Another possible approach would

be to employ a hidden Markov model (HMM). For a review of HMMs we refer the

reader to MacDonald and Zucchini (1997) or Cappé et al. (2006). Such an approach is

used for classification by Cappé (2002) but is restricted to count data. A HMM frame-

work is also used by Nam et al. (2014) in the related field of changepoint detection.

Fitting a HMM has the drawback of being computationally intensive. It also requires

the assumption that class transitions are Markovian. In other words the probability

of transitioning from one class to another would not depend on time or previous class

memberships. In the absence of prior information to support these assumptions such

an approach would be difficult to justify. With this in mind we introduce a novel and

computationally efficient wavelet based method for classifying a multivariate signal.

Our approach estimates the probability of the signal belonging to a particular class

at each time point. Importantly our approach, which requires an assumption of local

stationarity, does not require any pre-processing of the data.

The method which we introduce is based on the Multivariate Locally Stationary

Wavelet model introduced by Park et al. (2014). The Multivariate Locally Stationary
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Wavelet model is able to account for changes in both the second order properties of the

individual channels of a multivariate signal as well as the linear relationships between

channels. For our classification model the nonstationarity in the signal is due to class

switching causing the underlying process to change. In this article we focus on the

dependence between channels by using wavelet coherence. Wavelet coherence has the

useful property of being normalised with respect to the local spectral structure. Other

methods, such as Huang et al. (2004) or Fryzlewicz and Ombao (2009), normalise

the spectral estimates using the global variance of the signal. In our setting, where

class membership is a local rather than global, characteristic we must us a local

normalisation. Our ultimate goal for classification is to identify the probability of the

test signal belonging to each of the classes at a particular time given the observed

data. Calculating these probabilities, as opposed to assigning whichever class is closest

according some distance measure, will demonstrate the uncertainty in classification.

The remainder of the paper is organised as follows. Section 4.2 provides an

overview of the Multivariate Locally Stationary Wavelet model as well as the pa-

rameter estimation method which will be used. The main contribution of this paper

is contained in Section 4.3 which gives details of our classification method and how it

can be applied in practice. Section 4.4 contains two different examples of our method

applied to simulated data while Section 4.5 contains an example of our method applied

to accelerometer data.
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4.2 The Multivariate Locally Stationary Wavelet

Model

We now introduce the modelling framework which will be used as the foundation of

our classification model, the Multivariate Locally Stationary Wavelet model of Park

et al. (2014). This is a multivariate generalisation of the univariate LSW model of

Nason et al. (2000). Following Park et al. (2014) let Xt = [X
(1)
t , X

(2)
t , . . . , X

(P )
t ]′ be

a P -dimensional Multivariate Locally Stationary Wavelet process of length T where

T = 2J for some J ∈ N. Also let Vj(k/T ) be a lower triangular matrix of functions

known as the transfer function matrix and {zjk} be a set of independent random

vectors with the properties E [zjk] = 0 and Var{zjk} = 1. Finally let {ψj,k} be the

set of discrete wavelet coefficients. Xt can then be represented in the mean-squared

sense as follows,

Xt =
∞∑
j=1

∑
k

Vj(k/T )ψj,t−kzj,k. (4.1)

The transfer function matrix dictates both the auto- and cross-covariance properties

of the signal. These properties can be uniquely represented by the Local Wavelet

Spectral, LWS, matrix which is defined at scale j and rescaled time point u = t/T

as, Sj(u) = Vj(u)V′j(u). The diagonal elements of the LWS determine the auto-

covariance structure of the individual channels of the signal, whilst the off diagonal

terms determine the cross-covariance structure between pairs of channels.

Following Park et al. (2014), we define the wavelet coherence at scale j to be the
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matrix, ρj(u), which has the form,

ρj(u) = Dj(u)Sj(u)Dj(u), (4.2)

where Dj(u) is a diagonal matrix whose elements are S
(p,p)
j (u)(−1/2). The (p, q)-th

element of the coherence matrix, ρ
(p,q)
j (u), quantifies the strength of any linear rela-

tionship between channels p and q at scale j and rescaled time point u and takes a

value on the interval [-1,1]. A value close to 1 indicates a strong linear relationship

whereas a value close to -1 indicates a strong negative relationship.

To estimate the LWS and coherence matrices of a process we introduce the empir-

ical wavelet coefficient vector at scale j and location k, djk =
∑

t Xtψjk. This vector

can be used to define the raw wavelet periodogram matrix, Ijk = djkd
′
jk. Park et al.

(2014) establish that this is a biased and inconsistent estimator of the true LWS ma-

trix, Sjk. Consistency can be achieved by smoothing the estimate over time using a

rectangular kernel smoother with window size (2M + 1). Moreover the bias can be

removed using the autocorrelation wavelet inner product matrix, A, with elements

Ajl =
∑

τ Ψj(τ)Ψl(τ) where Ψj(τ) =
∑

k ψjk(0)ψjk(τ) (see Nason et al. (2000) or

Eckley and Nason (2005) for further details). Hence our estimate of the LWS matrix

is given by Ŝjk = (2M + 1)−1
∑k+M

m=k−M
∑

lA
−1
jl Ilm. The coherence matrix can then be

estimated by substituting Ŝjk into equation (4.2). In Section 4.3 we will make use of

wavelet coherence in order to classify a signal.
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4.3 Dynamic Classification

We now consider the classification problem for a Multivariate Locally Stationary

Wavelet signal, Xt. The setting which we consider is the following: Assume that

at any time, t, Xt will belong to one of Nc ≥ 2 different classes where Nc is known.

The class membership of Xt at time t is denoted by CX(t) ∈ {1, 2, . . . , Nc}. We do

not assume that the class membership of Xt is constant for all time points, nor do

we assume that the time spent in a particular class is fixed. Instead we assume that

whilst a signal is in a given class it is second order stationary. In other words if

CX(t) = c, ∀t ∈ {τ1, . . . , τ2}, the transfer function matrix, Vj(t) is a constant, i.e.

Vj(t) = V
(c)
j , ∀t ∈ {τ1, . . . , τ2}. The matrix V

(c)
j is the class specific transfer function

which has the same lower triangular form as the transfer function matrix described

in Section 4.2, however V
(c)
j is constrained to be constant over time. In effect this

particular assumed representation means that we can re-express the representation in

equation (4.1) as follows. Let I{c} [CX(t)] be an indicator function which is equal to 1

if CX(t) = c and 0 otherwise. Then Xt can be expressed as,

Xt =
∑
k

∑
j

Nc∑
c=1

I{c}[CX(k)]V
(c)
j ψjk(t)zjk.

In effect what we have done here is to re-write the time varying transfer function

matrix in terms of constant segments, Vj(k/T ) =
∑Nc

c=1 I{c}[CX(k)]V
(c)
j .

With this formulation in place it is readily seen that we can also write the LWS

of Xt as,

Sj(u) = Vj(u)V′j(u) =
Nc∑
c=1

ICX(u)=cS
(c)
j ,
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where S
(c)
j is the class specific LWS defined as S

(c)
j = V

(c)
j V

(c)′

j . Equivalently we can

express the time varying coherence matrix of Xt as, ρj(u) = ICX(u)=cρ
(c)
j .

In the next section we will use the coherence matrix to determine which class

the signal belongs to at a particular time. In order to do this we assume that each

class has a different coherence matrix, or more precisely, ∃j such that ρ
(c1)
j − ρ(c2)

j 6=

0,∀c1, c2 ∈ {1, 2, . . . , Nc}, c1 6= c2.

4.3.1 Training Data

To estimate the probability of signal Xt being in a particular class at a particular

time we make use of a set of Ni labelled training signals, the i-th element of which

is denoted, {Y(i)
t }i∈{1,2,...,Ni}. Each of the labelled signals are assumed to have a

representation of the form described in Section 4.3. Each training signal will have

an associated class function CY (i)(t) which is known. We estimate the LWS matrix,

Ŝjk;Y (i) , for each training signal followed by the coherence matrix, ρ̂jk;Y (i) . This is

done using the method described in Section 4.2.

Our ultimate goal for classification is to calculate the probability of the signal

belonging to a particular class at a particular time point. To do this we must calculate

the likelihood and therefore make distributional assumptions about the estimated

coherence. We find in practice that the coherence does not tend to readily fit any

standard distribution. We therefore take a Fisher’s-z transform of the coherence,

the estimates of which are well approximated by a Gaussian distribution, see Fisher
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(1915). The transformed coherence for class c, ζ
(c)
j is,

ζ
(c)
j = tanh−1 ρ

(c)
j . (4.3)

The mean of the transformed coherence estimate for class c is thus estimated by

averaging the elements of the transformed coherence estimate, ζ̂jk;Yi = tanh−1 ρ̂jk;Yi ,

for which CY (i)(k) = c,

ζ̂
(c)

j =
1∑Ni

i=1 #(CY (i)(k/Ti) = c)

Ni∑
i=1

∑
k∈C

Y (i) (k/Ti)=c

ζ̂kj;Y (i) . (4.4)

In a similar way the variance can also be estimated from the training data.

4.3.2 Selection of Highly Discriminative Coefficients

Following Fryzlewicz and Ombao (2009); Krzemieniewska et al. (2014) we will not

use the whole set of transformed coherence coefficients for classification. Instead

we use a subset of coefficients which show a significant difference between classes.

Using a subset of highly discriminative coefficients will reduce the error in the class

probability estimate and also reduce the computational complexity of calculating the

log-likelihood. We denote such a subset, which contains the scale and channel indices

(j, p, q) for p < q, as M. In order to select the appropriate coefficients we rank them

according to the distance measure, ∆
(p,q)
jk , defined as,

∆
(p,q)
j =

Nc∑
c=1

Nc∑
g=c+1

∣∣∣∣∣∣∣∣
ζ̂
(p,q)(c)
j − ζ̂(p,q)(g)j√

Var
{
ζ̂
(p,q)(c)
j

}
+ Var

{
ζ̂
(p,q)(g)
j

}
∣∣∣∣∣∣∣∣ . (4.5)

This distance measure is adapted from the distance measure in Krzemieniewska et al.

(2014) and incorporates the variance of the transformed coherence estimates which
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can be found empirically using the training data. We select those coefficients which

are found to have the largest distance measure.

4.3.3 Classification

Our ultimate goal is to estimate the time varying class membership of the signal,

Xt. We do this by estimating the probability of the signal belonging to a particular

class at a particular time point. We first estimate the transformed coherence for Xt

denoted as ζ̂jk;X . Given this estimate we can use Bayes’ theorem to obtain,

Pr
[
C(k) = c| ζ̂jk;X

]
∝ Pr [C(k) = c]L

(
ζ̂jk;X

∣∣∣ζj(k/T ) = ζ
(c)
j ∀j

)
, (4.6)

where L(θ|x) is the likelihood and Pr [C(k) = c] is a prior probability.

Note: In the absence of prior knowledge we assign an equal prior probability of

1/Nc to each class.

Due to the use of the Fisher-z transform we can assume that the distribution of

the transformed coherence estimator can be approximated by a Gaussian distribution

and so L(x|θ) is the Gaussian likelihood function with mean vector, µ(c) and variance

covariance matrix, Σ(c). The elements of µ(c) are the elements of ζ
(p,q)(c)
j ∀ p, q, j ∈M.

We also define µ̂k which contains the elements of ζ̂
(p,q)
jk;X ∀ p, q, j ∈ M. The density

function, up to a constant factor, can then be expressed as follows:

L
(
ζ̂jk;X

∣∣∣ζj(k/T ) = ζ
(c)
j ∀j

)
∝
∣∣Σ(c)

∣∣− 1
2 exp−1

2

{
(µ̂k − µ(c))′

(
Σ(c)

)−1
(µ̂k − µ(c))

}
.

(4.7)
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Since the true mean vectors and variance covariance matrices of ζ̂jk;X are not known

we substitute estimates taken from the training data described in Section 4.3.1. Com-

putational considerations mean that it is easier to calculate the log-likelihood func-

tion, ` (x |θ ) = log {L (x |θ )}. These can be easily related to the probabilities using

the following

Pr
[
C(k) = c| ζ̂jk;X

]
=

exp
{
`
(
ζ̂jk;X

∣∣∣ζj(k/T ) = ζ
(c)
j ∀j

)}
∑Nc

c=1 exp
{
`
(
ζ̂jk;X

∣∣∣ζj(k/T ) = ζ
(c)
j ∀j

)} . (4.8)

With the above in place we can consider the probability of misclassification. To

this end we define a misclassification at a particular time point t as the highest

class membership probability being placed on a class other than the true class. In

the following propositions we establish the asymptotic probability of misclassifying a

signal of length T .

Proposition 4.1 Let ∆(µ̂k) be a divergence criterion for a signal with length T .

Also let MT be the smoothing parameter used for spectral estimation. To ensure an

asymptotically consistent and unbiased spectral estimate Park et al. (2014) make the

assumptions that MT →∞ and MT/T → 0 as T →∞. We use the divergence crite-

rion to estimate the class membership at time k/T . In practice we place probabilities

on the class memberships however in order to establish the asymptotic properties of

the method we use the decision rule, D(µ̂k). For the case of two classes the decision

rule is defined as,

D(µ̂k) =


1 (estimate C(k) = 1) if ∆(µ̂k) > 0

2 (estimate C(k) = 2) if ∆(µ̂k) ≤ 0

.
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We show that if the true class membership at time k/T is class 1 then the probability

that D(µ̂k) = 2 will tend to zero asymptotically, in other words,

lim
T→∞

Pr(D(µ̂k) = 2|C(k) = 1) = 0

Proof: See Appendix B.1.

This result can be generalised to the case of Nc > 2 by replacing class 2 with whichever

class, other than class 1, has the highest likelihood at location k.

We also consider the asymptotic effect of increasing the Euclidean distance between

classes on the misclassification probability.

Proposition 4.2 Again using the divergence criterion, ∆(µ̂k), and decision rule,

D(µ̂k), defined in proposition 4.1 we consider the two class problem and the distance

between classes |µ1 − µ2 | → ∞. We show that for fixed T as the distance between

classes increases the probability of assigning the incorrect class tends to zero, in other

words,

lim
|µ1−µ2 |→∞

Pr(D(µ̂k) = 2|C(k) = 1) = 0

Proof: See Appendix B.2.

Again this result can be generalised to Nc > 2 is the same way as proposition 4.1.

4.4 Simulated Examples

In order to demonstrate how our method works in practice we now present a series of

simulated data examples.
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4.4.1 Example with Class Specific Autocovariance

The example presented in this section includes signals where both the auto- and cross-

covariance structures are dependent upon the time varying class membership. We use

a piecewise stationary trivariate autoregressive processes of the form,

Xt =


φ
(1)
1 Xt−1 + φ

(1)
2 Xt−2 + ξt if CX(t) = 1

φ
(2)
1 Xt−1 + φ

(2)
2 Xt−2 + ξt if CX(t) = 2

.

Here {φ(1)
1 , φ

(1)
2 } = {0.8,−0.5} and {φ(2)

1 , φ
(2)
2 } = {0.9, 0} are the class specific AR

coefficients. The set of random elements, {ξt}, are taken from a multivariate normal

distribution with zero mean and class specific covariances such that,

ξt ∼


N(0,Σ(1)) if CX(t) = 1

N(0,Σ(2)) if CX(t) = 2

,

where,

Σ(1) =


1 0.4 0.6

0.4 1 0

0.6 0 1

 , Σ(2) =


1 −0.4 −0.6

−0.4 1 0

−0.6 0 1

 . (4.9)

We simulate a set of 10 training signals using this model. The training signals each

have the same class function which is initially in class 1 and then switches to class

2 half way through the time span. In order to test our method we simulate a group

of 100 validation signals. The validation signals all have the same class function

which is very different to the one used in the training set. This class function is

initially in class 1 but switches 7 times at irregularly spaced intervals. We estimate

the class membership probabilities for the validation signals using the method outlined

in Section 4.3 and then take the mean.
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Figure 4.2: The upper plot shows the mean class membership probabilities for the

100 validation signals. The lower plot shows one of the validation signals. The middle

plot shows the true class membership over time.

The results of this are shown in Figure 4.2. We can see that the mean class

probability is consistently high for the true class which shows that our method has

performed well in terms of identifying the most likely class for a given time point.

We also note that there is a small region of uncertainty around the class transitions

which demonstrates that it is more difficult to classify in these regions. Looking at the

lower plot in Figure 4.2 we can see that it is possible to identify the class membership

visually as the signals autocovariance structure changes noticeably with class due to

the changing AR coefficients. In the following sections we will explore examples where

this is not the case.
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4.4.2 Example with Constant Auto-covariance

We now consider an example with a class specific cross-covariance structure and a

constant auto-covariance structure. We again use an autoregressive process where,

unlike the previous example, the AR coefficients are not class specific. The general

form of the signals is therefore,

Xt = 0.8Xt−1 − 0.5Xt−2 + ξt, ∀t ∈ {0, T − 1}. (4.10)

The set of random elements, {ξt} again follow a normal distribution with zero mean

and covariances defined in equation (4.9).

Our example is based on a set of 10 training signals and 100 validation signals. The

training signals all have the same simple class function as in the previous section, the

validation signals all have the same class function which starts in class 2 and switches

seven times at irregular intervals. We calculate the class membership probabilities for

the validation signals and take the mean, the results are shown in Figure 4.3. Looking

at the lower plot in Figure 4.3 we see that for this example it is very challenging to

discern the class visually as the auto-covariance structure is constant. The upper plot

indicates that despite this our method is still performing to a similar level of accuracy

as for the example in Section 4.4.1.

4.4.3 Example with Three Classes

Our final simulated example considers a scenarion where Nc > 2. A third class is

added to the example in Section 4.4.2. The AR coefficients will remain constant as in

equation (4.10) however for time points where CX(t) = 3 the random elements {ξt}
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Figure 4.3: The upper plot shows the mean class membership probabilities for the

group of 100 validation signals. The lower plot shows one of the validation signals.

The middle plot shows the true class membership over time

will be taken from a normal distribution with covariance matrix given by,

Σ(3) =


1 0.4 −0.6

0.4 1 0

−0.6 0 1


For this example we again use a set of 10 training signals. Each of the training signals

has a class function which cycles through the three classes from 1 to 3 twice. We sim-

ulate one group of 100 validation signals which have a class function which also cycles

through the class but in reverse order. Figure 4.4 shows the mean class probabilities

for the validation signals. Note that our method is able to place a high probability

on the correct class for the majority of time points. It is however possible to see
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Figure 4.4: The upper plot shows the mean class membership probabilities for the

group of 100 validation signals. The lower plot shows one of the validation signals.

The middle plot shows the true class membership over time.

that there are slightly larger regions of uncertainty around the class transitions. This

demonstrates that by adding a third class we have made the classification problem

more challenging leading to greater uncertainty.

4.5 Accelerometer Data Example

Finally we turn to an example based on tri-axial accelerometer data. A participant

is asked to walk normally following a route including a corridor and several flights

of stairs whilst wearing a tri-axial accelerometer which has a recording frequency of

20Hz. The experiment is repeated 13 times in total following three different routes, the

accelerometer records continuously during each repetition. For 6 of the repetitions the
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participant walks along the corridor up the stairs and down the stairs before walking

along the corridor again, we will refer to this as Route A. For another 6 repetitions

the participant walks down the stairs, along the corridor twice and then up the stairs,

we will refer to this as Route B. For the 13th repetitions the participant walks up the

stairs, down the stairs and then along the corridor, we refer this as Route C. Each

repetition lasts just over 100 seconds and so each recording is trimmed to be of length

T = 2048.

To illustrate our method we randomly select one repetitions each of Routes A and

B and as well as the single repetitions of Route C to classify. The other 10 repetitions

will be used as a training set. We adopt a three class model with class 1 being walking

along the corridor, class 2 being walking up the stairs and class 3 being walking down

the stairs. Figure 4.5 shows the classification results for the signals of Routes A and

B. In both cases the true class is given a high probability for nearly all time points,

the only exception to this being around the first transition in the Route A signal

where the highest probability is placed on class 3 when the true class is either 1 or

2. The middle plots show the true class memberships, it is noticeable that there are

very clear shifts in the probabilities which follow the true class memberships.
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(b) Route B

Figure 4.5: Class probabilities for Routes A and B. The upper plots show the estimated

class probabilities. The lower plots show the accelerometer recordings. The middle

plot shows the true class memberships.
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Figure 4.6 shows the results of our classification method performed on the Route

C repetition. Since this repetition follows Route C the resulting signal is unlike any in

the training data which all follow Route A or Route B. Looking at Figure 4.6 we see

that our method is able to place a high probability on the true class for the majority

of time points meaning that we can say what activities the participant is performing

during Route C.
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Figure 4.6: Class probabilities for Route C. The upper plots show the estimated class

probabilities. The lower plots show the accelerometer recordings. The middle plot

shows the true class memberships.

4.6 Conclusion

In this article we proposed a classification method for signals where the class mem-

bership is permitted to change over time. Such a model is distinct from the majority
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of classification methods which seek to assign a signal to one class for all time points.

Our method makes use of a set of labelled training signals to estimate the true spectral

properties of each class. Likelihood methods are then used to calculate the probability

of the signal being in each class at a particular time point. We also demonstrate this

method using both simulated data examples and a real accelerometer data set.
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Chapter 5

Wavelet Spectral Confidence

Intervals and a Test for Coherence

5.1 Introduction

Recent advances in multi-channel data recording techniques have led to an increased

need to analyse multivariate time series. This is particularly true in the medical

sector where modelling the dependencies between components of a series can reveal

much about the physical processes being studied. In general we cannot assume that

the series obtained from these experiments are second order stationary. It is more

reasonable to assume that the underlying process exhibits some form of evolving

stochastic structure in terms of both the individual components (e.g. autocovariance)

and the dependence between components. One method for representing such series

is the multivariate locally stationary wavelet (MvLSW) model introduced by Park

et al. (2014). The MvLSW framework provides a representation of time series with
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smoothly changing second order strucutre. Being a wavelet based representation the

MvLSW model decomposes the series in terms of frequency bands known as wavelet

levels. This is important as knowing which wavelet levels contribute to the variance

of a series can reveal much about the generating process. Park et al. (2014) also

discuss the modelling of dependencies between components of a multivariate series

using wavelet coherence. Wavelet coherence gives a measure of the linear dependence

between two components decomposed in terms of time and wavelet level.

Park et al. (2014) establish that MvLSW series can be uniquely represented by

the time and level dependent matrix of functions known as the local wavelet spec-

tral (LWS) matrix. They also provide associated estimation theory and prove the

asymptotic properties of the estimate.

In this work we further develop this framework by developing confidence intervals

for the LWS estimate and a hypothesis test for coherence. The development of confi-

dence intervals permits a better understanding of the uncertaintly of the estimate and

can be useful in determining which elemets of the LWS are nonzero and contribute to

the structure of the series.

Conversely the development of a hypothesis test enables us to identify which com-

ponents of the series are dependent. This enables us to build up a more complete

dependence structure. Using wavelet coherence for this test allows us to answer the

additional questions of which wavelet levels are driving any dependence and for which

time points is this dependence present? Such questions are important as the depen-

dencies between components may be localised to a particular level or short span of

time points which may be easily missed by a method which is not localised.
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Previous work on a test for coherence includes a test in the stationary Fourier

setting is discussed in Priestley (1981b), an implementation of a stationary Fourier

based test is also described in Shumway and Stoffer (2000). In both cases the test

assumes second order stationarity in the series and so will give no information about

the time location of any dependence between components.

The rest of this chapter proceeds as follows. Section 5.2 contain the calculation

of confidence intervals for the estimated LWS matrix. We demopnstrate the accuracy

of our confidence interval by applying it to a known LWS matrix and comparing

with confidece intervals obtained by bootstrapping. We also calculate a confidence

interval for an LWS estimate obtained from a real EEG recording. In Section 5.3 we

turn our attention to defining a hypothesis test for coherence between components.

Section 5.4 contains a simulation study demonstrating the effectivness of our method

on time series simulated from a range of stationary and nonstationary models. For

the stationary models we compare our method to the Fourier based method described

in Shumway and Stoffer (2000). Our hypothesis test is also applied to a real EEG

recording in Section 5.5. Finally Section 5.6 contains some conclusions and discussion.

5.2 Local Wavelet Spectral Matrix Confidence In-

tervals

We now consider how one might obtain point-wise confidence for estimates of the

LWS matrix, Ŝj,k. Recall from Chapter 3 the LWS estimate is obtained by cor-

recting the smoothed wavelet periodogram, Ŝj,k =
∑

lAjlĨj,k where Ĩj,k = (2M +
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1)−1
∑k+M

m=k−M Ij,m, and that the raw wavelet periodogram is obtained from the wavelet

coefficients such that, Ij,k = djkd
′
jk and djk =

∑
tX tψjk.

The first step towards calculating this confidence interval is to derive the variance

of the (p, q)-th element of the estimated LWS matrix, {σ(p,q)
j (k/T )}2. Our approach,

which we describe below, generalises the result established by Nason (2013) for the

univariate setting. The variance can be written in terms of the smoothed periodogram

as follows:

{
σ
(p,q)
j (k/T )

}2

= Var
{
Ŝ
(p,q)
j,k

}
=

J∑
l1=1

J∑
l2=1

A−1jl1A
−1
jl2

cov
(
Ĩ
(p,q)
l1,k

, Ĩ
(p,q)
l2,k

)
. (5.1)

The covariances between elements of the smoothed periodogram can also be written

in terms of the raw wavelet periodogram,

cov
(
Ĩ
(p,q)
l1,k

, Ĩ
(p,q)
l2,k

)
=

1

(2M + 1)2

k+M∑
m1=k−M

k+M∑
m2=k−M

cov
(
I
(p,q)
l1,m1

, I
(p,q)
l2,m2

)
. (5.2)

The final step is to derive the covariance between elements of the raw periodogram. In

doing so we first need to introduce a variant of autocorrelation wavelet inner product

matrix, Aλjlh. The elements of this are defined as, Aλjlh =
∑

τ Ψjl(λ + τ)Ψh(τ) with

Ψjl(τ) =
∑

k ψj,kψl,k+τ being defined in Fryzlewicz and Nason (2006).

Proposition 5.1 Let Ij,k be the raw periodogram matrix calculated from a series with

true LWS matrix Sj(k/T ), the covariance between the elements of the periodogram

matrix is,

cov
(
I
(p,q)
j,k , I

(p,q)
l,m

)
=

J∑
h=1

Ak−mjlh S
(p,q)
h

(
k +m

2T

) J∑
h′=1

Ak−mjlh′ S
(p,q)
h′

(
k +m

2T

)
,

+

J∑
h=1

Ak−mjlh S
(p,p)
h

(
k +m

2T

) J∑
h′=1

Ak−mjlh′ S
(q,q)
h′

(
k +m

2T

)
+O(T−1).

(5.3)
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Proof: See Appendix C.1

It was noted by Nason (2013) that, under mild regularity conditions, Ĩj,k and

therefore Ŝj,k is asymptotically normal. This result follows from Schuster (1972).

Consequently an (approximate) 100(1−α)% confidence interval for Ŝj,k can be defined

as follows,

[
Ŝj,k − zα/2σ(p,q)

j (k/T ), Ŝj,k + zα/2σ
(p,q)
j (k/T )

]
,

where zx = Φ(x) the standard normal cumulative distribution function.

Simulated Example: We illustrate the behaviour and accuracy of our analytic

LWS confidence intervals by calculating a 95% confidence interval for a known LWS

and comparing them to those obtained by parametric bootstrapping as in Park et al.

(2014). The known LWS is tri-variate with a series length of T = 512 and therefore

J = 9 levels. The only nonzero power is located in level j = 2. For this level some of

the LWS elements are time varying thus making the overall process nonstationary.

As in Park et al. (2014) our procedure for calculating the bootstrap confidence

intervals is to simulate a series from the true LWS and then estimate the LWS from

the simulated series. This is repeated for 1000 simulated series. The 0.025 and 0.975

quantiles of the estimates for each scale and location point is taken to be the 95%

confidence interval. The smoothing parameter used for both the variance calculation

and bootstrapping is M = 100 which we feel is a realistic choice given the smoothness

of the true local wavelet spectral. The results are shown in Figure 5.1.

Looking at Figure 5.1 it is clear that the confidence intervals obtained analytically

are very close to those obtained by bootstrapping. We note that for all spectral
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Figure 5.1: Local wavelet spectral matrix confidence intervals. The black lines show

the true values, the red lines show the 95% confidence intervals obtained by variance

calculation and the green lines show those obtained by bootstrapping. The dotted

line indicates zero spectral value.

estimates the confidence intervals become slightly wider close to the start or end of

the series. This is not all together surprising given the well known effects whereby

the smoothing kernel overlaps with the start or end of the series and so will contain

fewer data points. This causes an increase in variability which has been taken into

account in our calculation of equation (5.2). Looking closely at the plots we see that

some of the largest deviations happen when the trend of the true spectral elements

changes. The bootstrap confidence intervals show a smoother transition than those
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obtained analytically.

EEG Example: Our real data example again uses the multi-channel electroen-

cephalogram recording used in Section 3.4.2. Recall that a 64-channel recording was

taken from an experiment in which participants are instructed to move a hand held

joystick to either the left or right. The sampling rate of the recording was 512 Hertz

and it was bandpass filtered at (0.02, 100) Hertz. The recording length was 1000

milliseconds; the instruction (left vs right) was given at time u = 0; and the subject

responded with a wrist movement between 350 and 450 milliseconds. Here, we se-

lected data for one participant who was given the left instruction. In this Chapter we

look at 3 channels on the right hemisphere namely FC4 (right fronto-central), FC6

(also right fronto-central), and C4 (right central). The positions of these channels

are shown in Figure 5.2. We estimated the LWS matrix using a smoothing span that

was objectively selected by generalised cross-validated gamma deviance criterion de-

veloped in Ombao et al. (2001). We constructed a 95% confidence interval for the

estimate following the procedure from Section 5.2.

Figure 5.3 shows the resulting estimate and confidence interval for level j = 3,

which corresponds to the frequency range 6.25-12.5Hz. These plots show a drop in

the spectral and cross-spectral power for all elements of the local wavelet spectral

matrix estimate at this level. The confidence intervals also indicate that for this level

the true LWS is likely to be nonzero particularly in the first half of the time series.
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Figure 5.2: Placement of EEG channels included in analysis.
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Figure 5.3: EEG spectral estimates for level j = 3. The estimate is shown by the

black line, the red line show the 95% confidence interval.
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5.3 A Test of Coherence

Given the possibility of constructing an (approximate) confidence interval it is natural

to also consider the challenge of a test of coherence. This test is performed simulta-

neously on all channel pairs to highlight which, if any, show statistically significant

coherence. We base this test on the MvLSW model which allows us to pinpoint the

time and scale locations which are contributing to any coherence. We consider a P

dimensional time series Xt which has a representation under the MvLSW model. Re-

call from Chapter 3 that for a pair of channels, p and q, at scale j and location k the

coherence is defined as, ρ
(p,q)
j (k/T ) = S

(p,q)
j (k/T )/

√
S
(p,p)
j (k/T )S

(q,q)
j (k/T ). The null

and alternative hypotheses for the test of coherence are therefore,

H0 : ρ
(p,q)
j (k/T ) = 0,

H1 : ρ
(p,q)
j (k/T ) 6= 0.

From the definition of the coherence we see that these hypotheses can equivalently be

written in terms of the elements of the LWS matrix such that,

H0 : S
(p,q)
j (k/T ) = 0,

H1 : S
(p,q)
j (k/T ) 6= 0.

Since the true LWS is not generally known we make use of the estimate, Ŝ
(p,q)
j,k

defined in Chapter 3. As stated in Section 5.2, Ĩ
(p,q)
j,k , and therefore Ŝ

(p,q)
j,k is asymptot-

ically normal. The test statistic which we form is thus z
(p,q)
j,k = Ŝ

(p,q)
j,k /σ̂

(p,q)
j,k . Under the

null hypothesis, H0, the true cross spectrum is zero, S
(p,q)
j (k/T ) = 0, and it follows

that the test statistic will have zero mean and unit variance. We can therefore say
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that,

Pr
{∣∣∣z(p,q)j,k

∣∣∣ ≥ x
}
≈ 2 [1− Φ(x)] .

We apply this test to all channel pairs, p, q ∈ {1, P}, p < q, locations k ∈ {0, T−1}

and scales j ∈ {1, J}. For a multiple hypothesis test such as this it is necessary to

control the rate of false positives. To achieve this we propose using the false discovery

rate, FDR, procedure of Benjamini and Hochberg (1995). The simulation study, which

is reported below, demonstrates that this method works well. However we do note

that this does not account for possible dependencies between the test statistics.

5.4 Simulation Study

In this section we consider the performance of our test of coherence. We consider two

different situations in this study, Section 5.4.1 considers stationary time series models

while Section 5.4.2 considers nonstationary time series models. In the stationary

setting we will compare with the Fourier based test described in Shumway and Stoffer

(2000). This method is designed for stationary time series and so is not time localised.

We apply the hypothesis test to all available Fourier frequencies and control the false

discovery rate using FDR. We will refer to this method as the Fourier test.

The aim of our simulation study in Section 5.4.1 is to compare these two methods

in terms of their ability to identify the presence of coherence a pair of components as

well as the false discovery rate when the components are in fact independent. Since

the Fourier based test does not give a time localised test we count a positive result

for any frequency as indicating the pair of components are dependent across all time
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points. Conversley our MvLSW based method tests for the presence of coherence

across time as well as frequency. Within this setting therefore a positive result at any

level is an indication of coherence for that time point only.

5.4.1 Stationary Model Simulations

The first set of simulations which we consider in our simulation study are all second

order stationary. That is to say both the autocovariance structures of the individual

components and the coherences between components do not vary with time. The

stationary models which we will use are as follows,

S1: An AR(1) model with parameter equal to -0.9.

S2: An AR(1) model with parameter equal to 0.5.

Under each model we simulate two independent component and then take a linear

combination of these to create a bivariate series with correlated components. The

values of the correlation, r, which we will test are 0.9, 0.8 and 0.7. Both the Fourier

and MvLSW coherence tests are then applied to this bivariate series. The power of

the test is calculated as the proportion of time points which yield a positive result.

We also estimate the false positive rate by applying both tests to a bivariate series

with independent components and recording the proportion of time points which

yield a positive test result. We also test each model on a tri-variate series which we

denote as S3. The channels of this model have the same AR(1) form as model S1,

however we now simulate three independent components and take linear combinations

to achieve correlations between channels. Channels 1 and 2 are constructed to have
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a correlation of 0.9, channels 1 and 3 have a correlation of 0.8 and channels 2 and

3 have a correlation of 0.7. The false discovery rate is also tested for this model by

applying the tests to three independent components. In all cases we consider 1000

simulated series and perform the test across all time points.

Model r Fourier MvLSW

S1

0.9 1.000 0.996

0.8 1.000 0.984

0.7 1.000 0.955

S2

0.9 1.000 0.950

0.8 1.000 0.860

0.7 1.000 0.655

S3 {0.9, 0.8, 0.7} 1.000 0.979

Table 5.1: Simulation Study Results

Model Fourier MvLSW

S1 0.055 0.067

S2 0.042 0.001

S3 0.048 0.051

Table 5.2: Simulation Study False Discovery Rate

The results of the power tests are shown in Table 5.1 while the false discovery rate

results are shown in Table 5.2. Looking at Table 5.1 we see that, unsurprisingly,

the Fourier test has higher power than the MvLSW test in the stationary setting.
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In fact it successfully identifies coherence in every simulation. However the MvLSW

still performs reasonably well most notably for those models with high correlation,

(r = 0.9). These results are not unexpected as the Fourier test is able to exploit the

stationarity of the simulated models while our MvLSW test must allow for possible

nonstationarity. Looking at the false discovery rates in Table 5.2 we see that the

Fourier and MvLSW tests perform similarly with false positive rates at around the

5% level.

5.4.2 Nonstationary Model Simulations

The MvLSW coherence test is able to identify the particular time points which con-

tribute to coherence and can thus be used on nonstationary time series. We therefore

test this method on some simulated models with nonstationary coherence structures.

As the Fourier test is not able to deal with nonstationarity we omit it from this

simulation study.

The models which we use may have either stationary or nonstationary autocovari-

ance structures but all will be constructed to have nonstationary coherence strucutres.

Specifically the model forms we use are as as follows,

N1: An AR(1) model with parameter equal to -0.5.

N2: An time varying AR(1) model with parameter equal to 0.5− t/T .

N3: An MvLSW process with constant spectral power at level j = 2.

For each model we again simulate two independent components and take a linear

combination to achieve a certain desired correlation. The difference in this nonsta-
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tionary setting is that for each simulation we also randomly select the parameter,

τ ∈ {100, 412} and only take a linear combination for the time points, t ∈ {τ, T − 1}.

The correlation will therefore be a step function, initially equal to zero and then rising

to a value, r, at time point t = τ . For each simulation we apply the MvLSW test to

all time points. The proportion of positive results for the time points t ∈ {0, τ − 1} is

the false discovery rate for that simulation, similarly the proportion of positive results

for the time points t ∈ {τ, T − 1} is the power for that simulation. We repeat this for

1000 simulations and average the power and false discovery rates.

The results from the nonstationary simulation study are shown in Table 5.3. We

see from the results that the true discovery rate is similar to the stationary case indi-

cating the test is still powerful despite the nonstationary structure being considered.

The false discovery rate is however slightly higher, most notably for models N1 and

N2 where it can be as high as 0.136.

5.5 EEG Example

Returning to the EEG example from Section 5.2 we perform our coherence test on the

three channels. Again we controlled the expected false discovery rate to be below 0.05.

The results are shown in Figure 5.5. Significant coherence was detected between all

pairs of channels and in all cases this is driven by level j = 3. The pair C4 and FC4 are

significantly coherent for only a short span of time points between the times t/T = 0.2

and t/T = 0.4. The pair FC4 and FC6 on the other hand show significant coherence for

almost the entire time span. Finally the pair C4 and FC6 show significant coherence
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Model r
MvLSW

power false

N1

0.9 0.976 0.135

0.8 0.945 0.103

0.7 0.898 0.075

N2

0.9 0.984 0.136

0.8 0.967 0.108

0.7 0.919 0.085

N3

0.9 0.928 0.092

0.8 0.868 0.068

0.7 0.754 0.048

Table 5.3: Nonstationary Simulation Study Results

for most of the first half of the time span. It is interesting to note that both pairs C4

and FC4 and C4 and FC6 stop showing significant coherence close to the time point

where the stimulus is given to the participant. These results are not unexpected given

our earlier analysis of the confidence intervals.

5.6 Conclusion and Discussion

In conclusion we have shown that for a multivariate series represented under the

MvLSW model it is possible to construct an approximate confidence interval for the

estimated LWS matrix. Calculating this confidence interval can give a clear indica-
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Figure 5.4: Results of the test of coherence for EEG data. Plots on the diagonal show

the recordings themselves. The off diagonal plots show the scale and location points

which are found to be significantly coherent.

tion of which elements of the true LWS are likely to be nonzero. We demonstrated

the accuracy of our confidence interval by comparing it to one calculated using boot-

strapping. A confidence interval was also calculated for the LWS estimate for an

EEG recording. Leading on from the calculation of confidence intervals we defined a

hypothesis test for coherence. We compared this test to a Fourier bases test in a sim-

ulation study for stationary time series models. The MvLSW test was also applied to
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nonstationary time series models. Finally we applied our MvLSW test of coherence to

EEG data to show how it can be used in practice to identify significant dependencies

between channels.
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Chapter 6

Conclusions and Discussion of

Future Work

Wavelet methods are now well established in the field of time series analysis. The

locally stationary wavelet model (LSW) provides a wavelet based representation of a

time series without assuming second order stationarity. In Chapter 3 we introduced

the multivariate locally stationary wavelet model (MvLSW) which generalises the

univariate LSW model to cover multivariate time series. We also demonstrated how

the MvLSW model is able to effectively model the dependencies between components

of a multivariate series via wavelet coherence and wavelet partial coherence. Just as

the LSW model does not assume constant auto-covariance the MvLSW model does

not assume second order stationarity both in terms of the auto-covariance structure of

the individual components and the cross-covariance structure between components.

In Chapter 4 we introduced an application of the MvLSW model to the problem

of time series classification. The specific classification problem which we look at is the
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dynamic classification problem. What makes this different to the usual time series

classification case is that the class membership of a series is permitted to change over

time within a pre-determined set of potential classes. Our proposed approach is to

first estimate the coherence of a series with unknown class membership. At each

location we compare the estimated coherence to the coherence structure of each class

in order to calculate the probability of the series being in a particular class at that

location. Our approach is shown to work well on both simulated and accelerometer

data.

Finally Chapter 5 introduced a second application of the MvLSW model namely

a test of coherence. Testing the coherence between components of a multivariate time

series is important as it enables us to identify which are significantly coherent at a

given time. It also identifies which wavelet levels are driving any coherence.

We conclude this thesis by considering some possible future developments of this

research. We first consider the MvLSW model introduced in Chapter 3, an interesting

extension to this model would be to permit the use of the wavelet packet transform

rather than the non-decimated wavelet transform. The wavelet packet transform

is discussed in Section 2.4.3 and allows for greater flexibility in the model selection.

Cardinali and Nason (2008) consider the use of wavelet packets in the univariate LSW

setting but this has so far not been considered in a multivariate time series setting.

If we consider the dynamic classification method described in Chapter 4 one pos-

sibile future direction is to consider a scenario where the set of training data is in-

complete. For example the training data may contain examples of N known classes,

however there may be additional, unobserved classes. Such a scenario would require a
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method which can distinguish between time points belonging to one of the N observed

classes and those belonging to an unobserved class. Alternatively we may consider a

scenario where there is no training data available. Solving this problem would require

an unsupervised classifiction approach to estimate both the number and structure of

the classes.

Finally we consider possible extensions of the test of coherence described in Chap-

ter 5. In Section 5.3 we noted that the possibility of dependencies between test

statistics is not accounted for in the FDR procedure. Benjamini and Yekutieli (2001)

show that, under some mild assumptions about the dependencies, the FDR procedure

will still controll the false discovery rate but may be more conservative. A useful ex-

tension to our work would be to establish if the assumptions made by Benjamini and

Yekutieli (2001) are satisfied in our setting and if we can guard against the test being

overly conservative.

Another interesting extension would be to construction a test of partial coher-

ence. Partial coherence is able to distinguish between components which are directly

dependent and those which are dependent only through dependencies with other com-

ponents. A test of partial coherence would therefore enable us to formally distinguish

between these two scenarios. Early investigation into this subject indicates that it is

difficult to construct a suitable test statistic with a known distribution. The ability to

accurately map out the dependence structure also raises the possibility of dimension

reduction. Methods discussed in Jolliffe (1972) and McCabe (1984) seek to select a

subset of channels whilst retaining the majority of the information. Knowledge of the

(time varying) dependencies could then be incorporated into a similar scheme.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Proposition 3.1

Suppose, by way of contradiction, that there exist two representations for the same

process, V
(1)
j (u) and V

(2)
j (u). At each time point, u, there exists S

(1)
j (u) and S

(2)
j (u)

such that,

c(u, τ) =
∞∑
j=1

S
(1)
j (u)Ψj(τ) =

∞∑
j=1

S
(2)
j (u)Ψj(τ). (A.1)

Let ∆j(u) be a matrix representing the element-wise difference between the two rep-

resentations, From equation (A.1) it is clear that,

∞∑
j=1

∆j(u)Ψj(τ) = 0, ∀u ∈ (0, 1) and τ ∈ Z. (A.2)

To establish the uniqueness of the MvLWS representation we must show that (A.2)

implies that, ∆j(u) = 0 ∀j > 0, u ∈ (0, 1). Using arguments similar to those set

out by Nason et al. (2000) we use Parseval’s relation and the definition of the inner

product matrix to obtain, Ajl =
∑

τ Ψj(τ)Ψl(τ) = 1
2π

∫
dωΨ̂j(ω)Ψ̂l(ω), where Ψ̂j(ω) =
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∣∣∣ψ̂j(ω)
∣∣∣2 = 2j

∣∣m1(2
(j+1)ω)

∣∣2∏(j−2)
l=0

∣∣m0(2
lω)
∣∣2, and m0(ω) = 2−1/2

∑
k hk exp (−iωk),

with
∑

k h
2
k = 1, 1√

2

∑
k hk = 1 and |m1(ω)|2 = 1 − |m0(ω)|2. From equation (A.2)

we can say that for a general element:

∑
l

∑
j

∆
(p,q)
j (u)∆

(p,q)
l (u)

∑
τ

Ψj(τ)Ψl(τ) = 0

Hence it is easily shown that,

∫
dω

(∑
j

∆
(p,q)
j (u)Ψ̂j(ω)

)2

= 0. (A.3)

Since we have already made the assuption that,
∑

j S
(p,q)
j < ∞ ∀p, q , we infer

that
∑

j ∆
(p,q)
j (u)Ψ̂j(ω) is continuous in ω ∈ [−π, π], because every Ψ̂j(ω) is and∑

j

∣∣∣∆(p,q)
j (u)

∣∣∣ < ∞. Hence (A.3) implies that,
∑∞

j=1 ∆j(u)Ψ̂j(ω) = 0. The remain-

der of the proof then follows similarly to Nason et al. (2000).

�

A.2 Proof of Proposition 3.2

Recall the definition of the wavelet representation of a multivariate series in equa-

tion (3.2).

cov
(
X

(p)
uT , X

(q)
uT+τ

)
= E

[
X

(p)
uTX

(q)
uT+τ

]
,

= E

[
∞∑
j=1

∑
k

p∑
r=1

V
(p,r)
j (k/T )ψj,k(uT )z

(r)
j,k

×
∞∑
j′=1

∑
k′

q∑
r′=1

V
(q,r′)
j′ (k′/T )ψj′,k′(uT + τ)z

(r′)
j′,k′

]
,

=
∞∑
j=1

∑
k

min p,q∑
r=1

V
(p,r)
j (k/T )V

(q,r)
j (k/T )ψjk(uT )ψjk(uT + τ).
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Recalling the definition of the LWS matrix we can say that,

S
(p,q)
j (u) =

∑min p,q
r=1 V

(p,r)
j (u)V

(q,r)
j (u). We also make the substitition m = k − uT to

obtain,

cov
(
X

(p)
uT , X

(q)
uT+τ

)
=
∑
j

∑
m

Sj

(
uT +m

T

)
ψjm(0)ψjm(τ).

Analogous to the approach considered by Nason et al. (2000) in the univariate setting,

using the assumed Lipschitz continuous property of V
(p,q)
j (z) and therefore S

(p,q)
j (z)we

can consider the difference between this covariance and the function c(p,q)(u, τ),

∣∣∣ cov
(
X

(p)
uT , X

(q)
uT+τ

)
− c(p,q)(u, τ)

∣∣∣ =

∣∣∣∣∣∑
j

∑
m

Sj

(
uT +m

T

)
ψjm(0)ψjm(τ)− c(p,q)(u, τ)

∣∣∣∣∣
≤ T−1

∑
m

|m|Lj |ψjm(0)ψjm(τ)| = O(T−1).

�

A.3 Proof of Proposition 3.3

To establish this result we firstly demonstrate that S∗j(u) is positive definite. Since

Sj(u) is positive definite, by Choleski, there exists a lower triangular matrix Vj(u) so

that Sj(u) = Vj(u)V′j(u). Hence S∗j(u) = MVj(u)V′j(u)M′ = (MVj(u))(MVj(u))′.

Hence S∗j(u) is positive definite. Second, since S∗j(u) is positive definite, there exists

a lower triangular matrix V∗j (u) such that S∗j(u) = V∗j (u)V′∗j (u). Thus X∗t admits a

MvLSW representation with transfer function V∗j (u) .

�
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A.4 Proof of Proposition 3.4

Expectation: Recall that d
(p)
j,k =

∑
tX

(p)
t ψj,k(t) and

X
(p)
t =

∑
l

∑
m

∑
r V

(p,r)
l (m/T )ψl,m(t)z

(r)
l,m. Hence

E
[
I
(p,q)
j,k

]
=E

[{∑
t

X
(p)
t ψj,k(t)

}{∑
t′

X
(q)
t′ ψj,k(t

′)

}]
,

=
J∑
l=1

∑
m

min {p,q}∑
r=1

V
(p,r)
l (m/T ) V

(q,r)
l (m/T )×

{∑
t

ψl,m(t)ψj,k(t)

}2

. (A.4)

Substituting m = n+ k into (A.4) we obtain,

E
[
I
(p,q)
j,k

]
=

J∑
l=1

∑
n

{
S
(p,q)
l

(
n+ k

T

)}{∑
t

ψl,n+k−tψj,k−t

}2

.

Analogous to the univariate setting of Nason et al. (2000), since S
(p,q)
j (z), is Lipschitz

continuous with finite Lipschitz constant Lj, for some fixed n,∣∣∣S(p,q)
j ((k + n)/T )− S(p,q)

j (k/T )
∣∣∣ ≤ |n|Lj/T , and therefore S

(p,q)
j ((n+k)/T ) = S

(p,q)
j (k/T )+

O(T−1). Consequently

E
[
I
(p,q)
j,k

]
=

J∑
l=1

S
(p,q)
l

(
k

T

)∑
t

∑
v

ψj,−tψj,−v−t

×
∑
n

ψl,n−tψl,n−v−t +O(T−1). (A.5)

Recalling the definition of the autocorrelation wavelets we find that,

E
[
I
(p,q)
j,k

]
=

J∑
l=1

S
(p,q)
l

(
k

T

)∑
v

Ψl(v)Ψj(v) +O(T−1),

=
J∑
l=1

AjlS
(p,q)
l

(
k

T

)
+O(T−1).

�
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Variance: To establish the variance of the raw periodogram, we begin by consid-

ering E
[
(I

(p,q)
j,k )2

]
= E

[(
d
(p)
j,k

)2 (
d
(p)
j,k

)2]
.

E
[
(I

(p,q)
j,k )2

]
=

(
J∑
l=1

∑
m

p∑
r=1

V
(p,r)
l (m/T )

∑
t

ψl,m(t)ψj,k(t)

×
J∑
l′=1

∑
m′

q∑
r′=1

V
(q,r′)
l′ (m′/T )

∑
t′

ψl′,m′(t′)ψj,k(t
′)

)2

× E
[
z
(r1)
l1,m1

z
(r2)
l2,m2

z
(r3)
l3,m3

z
(r4)
l4,m4

]
.

Using a result due to Isserlis (1918) the above expression can be re-written as the sum

of three different elements E
[
(I

(p,q)
j,k )2

]
= I1 + I2 + I3 where, for example,

I1 =
4∏
i=1

∑
ti,li,mi,ri

V
(pi,ri)
li

(mi/T )ψlimi
(ti)ψjk(ti)E

[
z
(r1)
l1,m1

z
(r2)
l2,m2

]
E
[
z
(r3)
l3,m3

r
(r4)
l4,m4

]
.

Since E
[
z
(r1)
l1,m1

z
(r2)
l2,m2

]
= δl1l2δm1m2δr1r2 this simplifies to:

I1 =
∑

l1,m1,r1

(
V

(p,r1)
l1

(m1/T )
)2
×

T−1∑
t1=0

ψl1,m1(t1)ψj,k(t1)

×
T−1∑
t2=0

ψl1,m1(t2)ψj,k(t2)
∑

l3,m3,r3

(
V

(q,r3)
l3

(m3/T )
)2

×
T−1∑
t3=0

ψl3,m3(t3)ψj,k(t3)
T−1∑
t4=0

ψl3,m3(t4)ψj,k(t4);

= E
[
I
(p,p)
j,k

]
E
[
I
(q,q)
j,k

]
.

Similarly for I2 we find that I2 = E
[
I
(p,q)
j,k

]2
and I3 = E

[
I
(p,q)
j,k

]2
. Hence,

E
[
(I

(p,q)
j,k )2

]
= E

[
I
(p,p)
j,k

]
E
[
I
(q,q)
j,k

]
+ 2E

[
I
(p,q)
j,k

]2
,
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and

Var
{
I
(p,q)
j,k

}
=

(
J∑
l=1

AjlS
(p,p)
l

(
k

T

)
+O(T−1)

)

×

(
J∑
l=1

AjlS
(q,q)
l

(
k

T

)
+O(T−1)

)

+

(
J∑
l=1

AjlS
(p,q)
l

(
k

T

)
+O(T−1)

)2

.

From Nason et al. (2000) it is known that
∑

τ |Ψj(τ)| = O(2j), and hence Ajl =∑
τ Ψj(τ)Ψl(τ) ≤ (

∑
τ |Ψj(τ)|)2 = O(22j). Hence it is easily verified that,

Var
{
I
(p,q)
j,kT

}
=

J∑
l=1

AjlS
(p,p)
l

(
k

T

) J∑
l=1

AjlS
(q,q)
l

(
k

T

)

+

(
J∑
l=1

AjlS
(p,q)
l

(
k

T

))2

+O(22j/T ).

�

A.5 Proof of Proposition 3.5

Recall that the form of the smoothed periodogram is, Ĩj,k = (2M+1)−1
∑M

m=−M Ij,k+m.

Expectation:

E
[
Ĩ
(p,q)
j,k

]
=

1

2M + 1

M∑
m=−M

E
[
I
(p,q)
j,k+m

]
.

Where 2M + 1 is the size of the smoothing window. Using the expected value of the

periodogram previously calculated this becomes,

E
[
Ĩ
(p,q)
j,k

]
=

1

2M + 1

M∑
m=−M

J∑
l=1

{
AjlS

(p,q)
l

(
k +m

T

)
+O(T−1)

}
.
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Due to the Lipschitz continuity assumed for the spectral components it follows that:

E
[
Ĩ
(p,q)
j,k

]
=

J∑
l=1

AjlS
(p,q)
l

(
k

T

)
+O(MT−1).

As T → ∞, M → ∞ but M
T
→ 0, the smoothed raw wavelet periodogram (auto

and cross) is asymptotically biased in the usual way. As such it can be corrected by

use of the inverse inner product matrix, A−1 to achieve an asymptotically unbiased

estimate.

�

Variance: We begin by considering: E

[(
Ĩ
(p,q)
j,k

)2]
.

E

[(
Ĩ
(p,q)
j,k

)2]
=

1

(2M + 1)2

M∑
m=−M

M∑
m′=−M

E
[
I
(p,q)
j,k+mI

(p,q)
j,k+m′

]
,

by substituting τ = m′ −m. Using arguments similar to those employed in the proof

of the Expectation, it follows that:

1

(2M + 1)2

M∑
m=−M

M+m∑
τ=M−m

E
[
I
(p,q)
j,k+mI

(p,q)
j,k+m+τ

]
=

1

(2M + 1)2

∑
m,τ

E
[
d
(p)
j,k+md

(q)
j,k+md

(p)
j,k+m+τd

(q)
j,k+m+τ

]
,

Using Isserlis’ Theorem Isserlis (1918), it can be shown that

Var
{
Ĩ
(p,q)
j,k

}
=

1

(2M + 1)2

{∑
m,τ

E
[
d
(p)
j,k+md

(p)
j,k+m+τ

]
E
[
d
(q)
j,k+md

(q)
j,k+m+τ

]
+
∑
m,τ

E
[
d
(p)
j,k+md

(q)
j,k+m+τ

]
E
[
d
(q)
j,k+md

(p)
j,k+m+τ

]}
,

=
1

(2M + 1)2

M∑
m=−M

{∑
τ

J∑
l=1

S
(p,p)
l (k/T )Aτl,j

×
J∑
l′=1

S
(q,q)
l′ (k/T )Aτl′,j +

∑
τ

(
J∑
l=1

S
(p,q)
l (k/T )Aτl,j

)2

+
∑
τ

(|m|+ 1)O(T−1) +
∑
τ

(|m|+ 1)2O(T−2)

}
.
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where Aτl,j =
∑

t Ψl,j(t)Ψl,j(t + τ). Note that this is a form of inner product matrix

but with a given lag, τ . Examining the term,

∑
τ

J∑
l=1

S
(p,p)
l (k/T )Aτl,j

J∑
l′=1

S
(q,q)
l′ (k/T )Aτl′,j

≤

(∑
τ

∣∣∣∣∣
J∑
l=1

S
(p,p)
l (k/T )Aτl,j

∣∣∣∣∣
)(∑

τ

∣∣∣∣∣
J∑
l′=1

S
(q,q)
l′ (k/T )Aτl′,j

∣∣∣∣∣
)
,

=

(∑
n

∣∣c(p,p)(k, n)
∣∣∑

τ

|Ψl,j(n+ τ)|

)

×

(∑
n

∣∣c(q,q)(k, n)
∣∣∑

τ

|Ψl,j(n+ τ)|

)
= O(22j).

Similarly it can be shown that the second term is also equal to O(22j) hence,

Var
{
Ĩ
(p,q)
j,k

}
= O(22j/M) +O(22j/T ). (A.6)

Thus, the smoothed wavelet auto and cross periodogram is asympotically mean-

squared consistent as T →∞, M →∞, M
T
→ 0.

�
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Appendix B

Proofs for Chapter 4

B.1 Proof of Proposition 4.1

We begin by reminding the reader of a result established by Park et al. (2014) which

is relevant to this proof, namely that the variance of the LWS estimate, Ŝ
(p,q)
jk , can be

expressed as,

Var
{
Ŝ
(p,q)
jk

}
=O(M−1

T ) +O(T−1).

Here MT is the smoothing bandwidth used to calculate Ŝ
(p,q)
jk . For this estimate to be

both asymptotically unbiased and consistent Park et al. (2014) make the assumptions

that MT → ∞ and MT/T → 0 in the limit as T → ∞. Given this we can express

MT in the form MT = O(Tα) for some α ∈ (0, 1). The variance of Ŝ
(p,q)
jk can then be

expressed as a single order term, Var
{
Ŝ
(p,q)
jk

}
= O(T−α).

We now consider the asymptotics of our classification procedure. Let µ̂k be a vec-

tor of length N which contains the elements of ζ̂j,k;X which will be used to distinguish

120



the different classes. For simplicity we will consider the two class problem however

the results are easily generalised to the more general case. We define the divergence

criterion to be,

∆(µ̂k) =
1

2

{
(µ̂k − µ2)

′Σ−12 (µ̂k − µ2)− (µ̂k − µ1)
′Σ−11 (µ̂k − µ1) + log

|Σ2 |
|Σ1 |

}
.

(B.1)

This divergence criterion is simply the difference between log-likelihoods under the

two classes. We also define the classification decision rule,

D(µ̂k) =


1 (estimate C(k) = 1) if ∆(µ̂k) > 0

2 (estimate C(k) = 2) if ∆(µ̂k) ≤ 0

.

Suppose that the true class membership, C(k), is equal to 1. Here we want to show

that the probability of misclassification goes to 0 as T → ∞. That is we want to

show, Pr(D(µ̂k) = 2|C(k) = 1)→ 0, or equivalently, Pr(∆(µ̂k) ≤ 0|C(k) = 1)→ 0.

What we will actually show is that for the scaled divergence, δT (µ̂k) = ∆(µ̂k)/T
α

for some α ∈ (0, 1), that Pr(δT (µ̂k) ≤ 0|C(k) = 1)→ 0 as T →∞, and consequently

that Pr(D(µ̂k) = 2|C(k) = 1)→ 0 in the same limit. This results immediately follows

if we can establish that as T → ∞ then δT (µ̂k)
P→ K ≥ 0, which is satisfied by the

following two conditions in the limit a T → ∞: A1: E [δT (µ̂k)] → K where K > 0

and A2: Var {δT (µ̂k)} → 0,
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Expectation of δT (µ̂k)

We first consider the expectation of δT (µ̂k),

E [δT (µ̂k)] =− 1

2Tα
E
[
(µ̂k − µ1)

′Σ−11 (µ̂k − µ1)
]

+
1

2Tα
E
[
(µ̂k − µ2)

′Σ−12 (µ̂k − µ2)
]

+
1

2Tα
E

[
log
|Σ2 |
|Σ1 |

]
.

We note that the first term follows a chi-squared distribution with N degrees of

freedom, the expectation of which is equal to N . We now focus on the second term,

E
[
(µ̂k − µ2)

′Σ−12 (µ̂k − µ2)
]

=E
[
{(µ̂k − µ1) + (µ1 − µ2)}

′Σ−12 {(µ̂k − µ1) + (µ1 − µ2)}
]
,

=E
[
(µ̂k − µ1)

′Σ−12 (µ̂k − µ1)
]

+ 2E
[
(µ̂k − µ1)

′Σ−12 (µ1 − µ2)
]

+ E
[
(µ1 − µ2)

′Σ−12 (µ1 − µ2)
]
.

=E
[
tr{(µ̂k − µ1)

′Σ−12 (µ̂k − µ1)}
]

+ (µ1 − µ2)
′Σ−12 (µ1 − µ2),

=E
[
tr{Σ−12 (µ̂k − µ1)(µ̂k − µ1)

′}
]

+ (µ1 − µ2)
′Σ−12 (µ1 − µ2),

=tr{Σ−12 Σ1}+ (µ1 − µ2)
′Σ−12 (µ1 − µ2). (B.2)

Therefore,

E [δT (µ̂k)] =
1

2Tα

{
−N + tr{Σ−12 Σ1}+ (µ1 − µ2)

′Σ−12 (µ1 − µ2) + log
|Σ2 |
|Σ1 |

}
.

Using the results of Proposition 5 from Park et al. (2014), the variance covariance

matrices can be expressed as,

Σc =
Ac

Tα
,

Σ−1c =BcT
α.
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Here Ac and Bc are constant symmetric positive definite matrices. The expectation

can then be written as,

E [δT (µ̂k)] =
1

2Tα

{
−N + tr{B1A2}+ Tα(µ1 − µ2)

′B−12 (µ1 − µ2) + log
|A2 |
|A1 |

}
.

SinceB2 is positive definite then we can say (µ1−µ2)
′B−12 (µ1−µ2) = C for some con-

stant C > 0. Also, since A1 and B2 are symmetric and positive definite, Meenakshi

and Rajian (1999) showed that A1B2 will be positive definite and so we can say that

tr{B1A2} = D for some D > 0. Finally the term |A2 | / |A1 | must be positive as

both A1 and A2 are positive definite. Without loss of generality we assume that this

term is equal to G ∈ (0,∞). We can therefore express the expectation as,

E [δT (µ̂k)] =
1

2Tα
{−N + CTα +D + logG} ,

=
C

2
+
D −N + logG

2Tα
.

Clearly as T →∞ then E [δT (µ̂k)]→ C/2 where C/2 is a positive constant therefore

condition A1 is satisfied.

Variance of δT (µ̂k)

We now consider the variance of δT (µ̂k),

Var {δT (µ̂k)} =
1

4T 2α
Var

{
(µ̂k − µ1)

′Σ−11 (µ̂k − µ1)
}

+
1

4T 2α
Var

{
(µ̂k − µ2)

′Σ−12 (µ̂k − µ2)
}

+
1

2T 2α
cov

(
(µ̂k − µ1)

′Σ−11 (µ̂k − µ1), (µ̂k − µ2)
′Σ−12 (µ̂k − µ2)

)
.

(B.3)

The first term is simply the variance of a chi-squared random variable with N degrees

of freedom so is equal to 2N . We therefore focus on the second and third terms.
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Looking at the second term,

Var
{

(µ̂k − µ2)
′Σ−12 (µ̂k − µ2)

}
=E

[{
(µ̂k − µ2)

′Σ−12 (µ̂k − µ2)
}2]

−
{
E
[
(µ̂k − µ2)

′Σ−12 (µ̂k − µ2)
]}2

.

The second term in the above equation,
{
E
[
(µ̂k − µ2)

′Σ−12 (µ̂k − µ2)
]}2

, is simply

the square of the term found in equation (B.2). We therefore focus on the first term,

E
[{

(µ̂k − µ2)
′Σ−12 (µ̂k − µ2)

}2]
. For simplicity we make the substitution µ∗ = (µ̂k−

µ2),

E
[{
µ∗ ′Σ−12 µ

∗}2] =E
[
µ∗ ′Σ−12 µ

∗µ∗ ′Σ−12 µ
∗] ,

=E

[∑
i

∑
j

µ∗i
(
Σ−12

)
ij
µ∗j
∑
i′

∑
j′

µ∗i′
(
Σ−12

)
i′j′
µ∗j′

]
,

=
∑
i

∑
j

∑
i′

∑
j′

(
Σ−12

)
ij

(
Σ−12

)
i′j′
E
[
µ∗iµ

∗
jµ
∗
i′µ
∗
j′

]
,

=
∑
i

∑
j

∑
i′

∑
j′

(
Σ−12

)
ij

(
Σ−12

)
i′j′

{
E
[
µ∗iµ

∗
j

]
E
[
µ∗i′µ

∗
j′

]
+E [µ∗iµ

∗
i′ ]E

[
µ∗jµ

∗
j′

]
+ E

[
µ∗iµ

∗
j′

]
E
[
µ∗iµ

∗
j′

]}
.

In the final step above we have used Isserlis’ theorem, Isserlis (1918), to split the

expression into three terms. We label these as D1, D2 and D3. We also note that

E
[
µ∗iµ

∗
j

]
= (Σ1)ij + (µ1 − µ2)i(µ1 − µ2)j. Looking at these terms individually we
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have,

D1 =
∑
iji′j′

(
Σ−12

)
ij

(
Σ−12

)
i′j′
E
[
µ∗iµ

∗
j

]
E
[
µ∗i′µ

∗
j′

]
,

=
∑
iji′j′

(
Σ−12

)
ij

(
Σ−12

)
i′j′

{
(Σ1)ij (Σ1)i′j′ + (µ1 − µ2)i(µ1 − µ2)j (Σ1)i′j′

+(µ1 − µ2)i′(µ1 − µ2)j′ (Σ1)ij + (µ1 − µ2)i(µ1 − µ2)j(µ1 − µ2)i′(µ1 − µ2)j′
}
,

=
∑
ij

(
Σ−12

)
ij

(Σ1)ij
∑
i′j′

(
Σ−12

)
i′j′

(Σ1)i′j′

+
∑
ij

(
Σ−12

)
ij

(µ1 − µ2)i(µ1 − µ2)j
∑
i′j′

(
Σ−12

)
i′j′

(Σ1)i′j′

+
∑
i′j′

(
Σ−12

)
i′j′

(µ1 − µ2)i′(µ1 − µ2)j′
∑
ij

(
Σ−12

)
ij

(Σ1)ij

+
∑
ij

(
Σ−12

)
ij

(µ1 − µ2)i(µ1 − µ2)j
∑
i′j′

(
Σ−12

)
i′j′

(µ1 − µ2)i′(µ1 − µ2)j′ ,

=tr
{
Σ−12 Σ1

}2
+ 2 tr

{
Σ−12 Σ1

}
(µ1 − µ2)

′Σ−12 (µ1 − µ2) +
{

(µ1 − µ2)
′Σ−12 (µ1 − µ2)

}2
,

=E
[
(µ̂k − µ2)

′Σ−12 (µ̂k − µ2)
]2
.

Following a similar procedure for D2,

D2 =
∑
iji′j′

(
Σ−12

)
ij

(
Σ−12

)
i′j′
E [µ∗iµ

∗
i′ ]E

[
µ∗jµ

∗
j′

]
,

=
∑
iji′j′

(
Σ−12

)
ij

(
Σ−12

)
i′j′

{
(Σ1)ii′ (Σ1)jj′ + (µ1 − µ2)i(µ1 − µ2)i′ (Σ1)jj′

+(µ1 − µ2)j(µ1 − µ2)j′ (Σ1)ii′ + (µ1 − µ2)i(µ1 − µ2)j(µ1 − µ2)i′(µ1 − µ2)j′} ,

=tr
{
Σ−12 Σ1Σ

−1
2 Σ1

}
+ 2(µ1 − µ2)

′Σ−12 Σ1Σ
−1
2 (µ1 − µ2) +

{
(µ1 − µ2)

′Σ−12 (µ1 − µ2)
}2
.

Similarly D3 = D2. Putting together we obtain,

Var
{

(µ̂k − µ2)
′Σ−12 (µ̂k − µ2)

}
=2tr

{
Σ−12 Σ1Σ

−1
2 Σ1

}
+ 4(µ1 − µ2)

′Σ−12 Σ1Σ
−1
2 (µ1 − µ2)

+ 2(µ1 − µ2)
′Σ−12 (µ1 − µ2).
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We now consider the covariance term in equation (B.3),

cov
(
(µ̂k − µ1)

′Σ−11 (µ̂k − µ1), (µ̂k − µ2)
′Σ−12 (µ̂k − µ2)

)
=

E
[
(µ̂k − µ1)

′Σ−11 (µ̂k − µ1)(µ̂k − µ2)
′Σ−12 (µ̂k − µ2)

]
− E

[
(µ̂k − µ1)

′Σ−11 (µ̂k − µ1)
]
E
[
(µ̂k − µ2)

′Σ−12 (µ̂k − µ2)
]
.

Looking at the first term,

E
[
(µ̂k − µ1)

′Σ−11 (µ̂k − µ1)(µ̂k − µ2)
′Σ−12 (µ̂k − µ2)

]
=∑

iji′j′

(Σ−11 )ij(Σ
−1
2 )i′j′E

[
(µ̂k − µ1)i(µ̂k − µ1)j(µ̂k − µ2)i′(µ̂k − µ2)j′

]
.

We again split this up into three terms, C1, C2 and C3,

C1 =
∑
iji′j′

(Σ−11 )ij(Σ
−1
2 )i′j′E [(µ̂k − µ1)i(µ̂k − µ1)j]E [(µ̂k − µ2)i′(µ̂k − µ2)j′ ] ,

=
∑
iji′j′

(Σ−11 )ij(Σ
−1
2 )i′j′ {(Σ1)ij(Σ1)i′j′ + (Σ1)ij(µ1 − µ2)i′(µ1 − µ2)j′} ,

=Ntr
{
Σ1Σ

−1
2

}
+N(µ1 − µ2)

′Σ−12 (µ1 − µ2).

Similarly for C2,

C2 =
∑
iji′j′

(Σ−11 )ij(Σ
−1
2 )i′j′E [(µ̂k − µ1)i(µ̂k − µ2)i′ ]E [(µ̂k − µ1)j(µ̂k − µ2)j′ ] ,

=
∑
iji′j′

(Σ−11 )ij(Σ
−1
2 )i′j′(Σ1)ii′(Σ1)jj′ ,

=tr
{
Σ1Σ

−1
1 Σ1Σ

−1
2

}
= tr

{
Σ1Σ

−1
2

}
.

It can also be shown that C2 = C3 therefore,

cov
(
(µ̂k − µ1)

′Σ−11 (µ̂k − µ1), (µ̂k − µ2)
′Σ−12 (µ̂k − µ2)

)
= 2tr

{
Σ1Σ

−1
2

}
.
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Therefore,

Var {δT (µ̂k)} =
1

2T 2α

[
N + tr

{
Σ−12 Σ1Σ

−1
2 Σ1

}
+ 2(µ1 − µ2)

′Σ−12 Σ1Σ
−1
2 (µ1 − µ2)

+(µ1 − µ2)
′Σ−12 (µ1 − µ2)− tr

{
Σ1Σ

−1
2

}]
,

=
1

2T 2α
[N + tr {B2A1B2A1}+ 2Tα(µ1 − µ2)

′B2A1B2(µ1 − µ2)

+ Tα(µ1 − µ2)
′B2(µ1 − µ2) + 4tr{B1A2}] .

Using similar arguments as for the expectation we can say that tr {B2A1B2A1} =

F > 0 and (µ1 − µ2)
′B2A1B2(µ1 − µ2) = H > 0 and so we can say,

Var {δT (µ̂k)} =
1

2T 2α
[N + F + 2TαH + TαC + 4D],

=
2H + C

2Tα
+
N + F +D

2T 2α
.

Clearly as T →∞ then Var {δT (µ̂k)} → 0 and so condition A2 is satisfied. Since both

conditions are now satisfied we have established that Pr(δT (µ̂k) ≤ 0|C(k) = 1) → 0

as T →∞.

�

B.2 Proof of Proposition 4.2

We now consider the case of the distance between classes diverging, i.e. |µ1 − µ2 | →

∞ for a fixed T . Here we define |µ1 − µ2 | =
√∑N

i=1 |(µ1)i − (µ2)i |. To this end we

define a different scaling of the divergence criterion,

δµ(µ̂k) =
∆(µ̂k)

|µ1 − µ2 |
2 ,

=
1

2 |µ1 − µ2 |
2

{
+(µ̂k − µ2)

′Σ−12 (µ̂k − µ2)− (µ̂k − µ1)
′Σ−11 (µ̂k − µ1) + log

|Σ2 |
|Σ1 |

}
.
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Following a similar logic to the proof of Proposition 4.1 we aim to show that in the

limit |µ1 − µ2 | → ∞ the probability of misclassification, Pr(D(µ̂k) = 2|C(k) = 1)

will tend to 0. This is equivalent to showing that Pr(δµ(µ̂k) ≤ 0|C(k) = 1)→ 0 in the

same limit which immediately follows if we satisfy the following conditions in the limit

as |µ1 − µ2 | → ∞: B1: E
[
δµ(µ̂k)

]
→ K where K > 0 and B2: Var

{
δµ(µ̂k)

}
→ 0.

Expectation

We first consider the expected value of δµ(µ̂k). Using the results from the proof of

Proposition 4.1 it is readily seen that,

E
[
δµ(µ̂k)

]
=

1

2 |µ1 − µ2 |
2

{
−N + tr{Σ−12 Σ1}+ (µ1 − µ2)

′Σ−12 (µ1 − µ2) + log
|Σ2 |
|Σ1 |

}
.

We assume that the terms N , tr{Σ−12 Σ1} and log |Σ2 |/|Σ1 | do not depend upon the

distance between classes and so we will replace these three terms by the constant Q.

We now consider the third term in the bracket, (µ1 − µ2)
′Σ−12 (µ1 − µ2). First we

rewrite (µ1 − µ2) in the form,

(µ1 − µ2) = |µ1 − µ2 |v,

where v = [v1, . . . , vN ]′ a vector of constants. The third term can then be rewritten,

(µ1 − µ2)
′Σ−12 (µ1 − µ2) = |µ1 − µ2 |

2 v′Σ−12 v = |µ1 − µ2 |
2R,

where R is a positive constant due to Σ2, and therefore Σ−12 being positive definite.

Putting these terms into the expectation we get,

E
[
δµ(µ̂k)

]
=

Q

2 |µ1 − µ2 |
2 +

R

2
.
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Clearly as |µ1 − µ2 | → ∞ then E [δ(µ̂k)] → R
2

which is a positive constant thus

condition B1 is satisfied.

Variance

We now consider the variance of δµ(µ̂k). Using the results from Section B.1 we can

say that,

Var
{
δµ(µ̂k)

}
=

1

2 |µ1 − µ2 |
4

[
N + tr

{
Σ−12 Σ1Σ

−1
2 Σ1

}
+ 2(µ1 − µ2)

′Σ−12 Σ1Σ
−1
2 (µ1 − µ2)

+(µ1 − µ2)
′Σ−12 (µ1 − µ2) + 2tr

{
Σ1Σ

−1
2

}]
.

We first look at the terms which do not depend on |µ1 − µ2 | namelyN , tr
{
Σ−12 Σ1Σ

−1
2 Σ1

}
and tr

{
Σ1Σ

−1
2

}
. These terms can again be collected into one constant term, U.

We have already stated that the fourth term in the brackets can be written as

|µ1 − µ2 |
2R. The third term can also be re written,

2(µ1 − µ2)
′Σ−12 Σ1Σ

−1
2 (µ1 − µ2) = |µ1 − µ2 |

2 v′Σ−12 Σ1Σ
−1
2 v = |µ1 − µ2 |

2 V.

Putting these terms into the variance we get,

Var
{
δµ(µ̂k)

}
=

U

2 |µ1 − µ2 |
4 +

R + V

2 |µ1 − µ2 |
2 .

Clearly in the limit |µ1 − µ2 | → ∞ then Var
{
δµ(µ̂k)

}
→ 0 and so the condition

B2 is satisfied. We have therefore satisfied both conditions for this proof and have

established that Pr(δµ(µ̂k) ≤ 0|C(k) = 1)→ 0 as |µ1 − µ2 | → ∞.

�
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Appendix C

Proofs for Chapter 5

C.1 Proof of Proposition 5.1

We consider the variance of the elements of the estimated LWS matrix. The estimate

of the (p, q) element of the LWS at level j and location k is denoted as Ŝ
(p,q)
j,k =∑J

l=1A
−1
jl Ĩ

(p,q)
j,k , where Ĩ

(p,q)
j,k is the smoothed periodogram and Ajl is the autocorrelation

wavelet inner product matrix. The variance of this estimate is therefore,

Var
{
Ŝ
(p,q)
j,k

}
= Var

{
J∑
l=1

A−1jl Ĩ
(p,q)
j,k

}
,

=
J∑

l1=1

J∑
l2=1

A−1jl1A
−1
jl2

cov
(
Ĩ
(p,q)
l1,k

, Ĩ
(p,q)
l2,k

)
.

Smoothing of the periodogram is performed using a box kernel with smoothing pa-

rameter M . The smoothed periodogram therefore has the form Ĩ
(p,q)
l,k = (2M +

1)−1
∑k+M

m=k−M I
(p,q)
l,m . Consequently the covariance between elements of the smoothed
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periodogram is given by,

cov
(
Ĩ
(p,q)
l1,k

, Ĩ
(p,q)
l2,k

)
=

1

(2M + 1)2

k+M∑
m1=k−M

k+M∑
m2=k−M

cov
(
I
(p,q)
l1,m1

, I
(p,q)
l2,m2

)
.

The remaining challenge is to calculate the covariance between elements of the raw

periodogram. To find this we use the definition of the raw periodogram, I
(p,q)
j,k =

d
(p)
j,kd

(q)
j,k, where d

(p)
j,k is the empirical wavelet coefficient for channel p at level j and

location k.

cov
(
I
(p,q)
j,k , I

(p,q)
l,m

)
= E

[
I
(p,q)
j,k I

(p,q)
l,m

]
− E

[
I
(p,q)
j,k

]
E
[
I
(p,q)
l,m

]
.

As established in Park et al. (2014) the expected value of the raw periodogram is

E
[
I
(p,q)
j,k

]
=
∑

lAjlS
(p,q)
l (k/T )+O(T−1). We therefore focus our attention on the first

term. Using the results from Isserlis (1918) we can rewrite this term as,

E
[
I
(p,q)
j,k I

(p,q)
l,m

]
=E

[
d
(p)
j,kd

(q)
j,kd

(p)
l,md

(q)
l,m

]
,

=E
[
d
(p)
j,kd

(q)
j,k

]
E
[
d
(p)
l,md

(q)
l,m

]
+ E

[
d
(p)
j,kd

(p)
l,m

]
E
[
d
(q)
j,kd

(q)
l,m

]
+ E

[
d
(p)
j,kd

(q)
l,m

]
E
[
d
(q)
j,kd

(p)
l,m

]
.

We now concentrate on the term, E
[
d
(p)
j,kd

(q)
l,m

]
. Using the definition of the empirical

wavelet coefficients, d
(p)
j,k =

∑
tX

(p)
t ψj,k(t), whereX

(p)
t =

∑
l

∑
m

∑
r V

(p,r)
l (m/T )ψl,m(t)z

(r)
l,m,

and the covariance property of the random elements, cov
(
z
(r)
jk , z

(r′)
j′k′

)
= δrr′δjj′δkk′ , we

can express this expectation as follows,

E
[
d
(p)
j,kd

(q)
l,m

]
=

J∑
h=1

∑
n

min (p,q)∑
r=1

V
(p,r)
h (n/T )V

(q,r)
h (n/T )

∑
t

ψh,n(t)ψj,k(t)
∑
t′

ψh,n(t′)ψl,m(t′),

=
J∑
h=1

∑
n

S
(p,q)
h (n/T )

∑
t

ψh,n(t)ψj,k(t)
∑
t′

ψh,n(t′)ψl,m(t′),

=
J∑
h=1

S
(p,q)
h

(
k +m

2T

)∑
n

∑
t

ψh,n(t)ψj,k(t)
∑
t′

ψh,n(t′)ψl,m(t′) +O(T−1).
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Here the final line uses the Lipschitz continuous property of the LWS as well as the

fact that
∑

t ψh,n(t)ψj,k(t) is also finite. Rearranging the last terms and using the

substitution τ = t′ − t gives,

E
[
d
(p)
j,kd

(q)
l,m

]
=

J∑
h=1

S
(p,q)
h

(
k +m

2T

)∑
τ

∑
t

ψj,k−tψl,m−t−τ
∑
n

ψh,n−tψh,n−t−τ +O(T−1),

=
J∑
h=1

S
(p,q)
h

(
k +m

2T

)∑
τ

∑
t

ψj,k−tψl,m−t−τΨh(τ) +O(T−1),

=
J∑
h=1

S
(p,q)
h

(
k +m

2T

)∑
τ

∑
t

ψj,k−tψl,k−t+m−k−τΨh(τ) +O(T−1),

=
J∑
h=1

S
(p,q)
h

(
k +m

2T

)∑
τ

Ψjl(k −m+ τ)Ψh(τ) +O(T−1).

Where Ψj(τ) =
∑

k ψj,kψj,k+τ is the autocorrelation wavelet defined in Nason et al.

(2000) and Ψjl(τ) =
∑

k ψj,kψl,k+τ is defined in Fryzlewicz and Nason (2006). Putting

this into the expression for E
[
I
(p,q)
j,k I

(p,q)
l,m

]
gives,

E
[
I
(p,q)
j,k I

(p,q)
l,m

]
=
∑
h

AjhS
(p,q)
h (k/T )

∑
h′

Alh′S
(p,q)
h′ (m/T )

+
J∑
h=1

S
(p,p)
h

(
k +m

2T

)∑
τ

Ψjl(k −m+ τ)Ψh(τ)

×
J∑

h′=1

S
(q,q)
h′

(
k +m

2T

)∑
τ

Ψjl(k −m+ τ)Ψh′(τ)

+
J∑
h=1

S
(p,p)
h

(
k +m

2T

)∑
τ

Ψjl(k −m+ τ)Ψh(τ)

×
J∑

h′=1

S
(q,q)
h′

(
k +m

2T

)∑
τ

Ψjl(k −m+ τ)Ψh′(τ) +O(T−1).
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Putting this into the expression for the covariance gives,

cov
(
I
(p,q)
j,k , I

(p,q)
l,m

)
=

J∑
h=1

S
(p,p)
h

(
k +m

2T

)∑
τ

Ψjl(k −m+ τ)Ψh(τ)

×
J∑

h′=1

S
(q,q)
h′

(
k +m

2T

)∑
τ

Ψjl(k −m+ τ)Ψh(τ)

+
J∑
h=1

S
(p,p)
h

(
k +m

2T

)∑
τ

Ψjl(k −m+ τ)Ψh(τ)

×
J∑

h′=1

S
(q,q)
h′

(
k +m

2T

)∑
τ

Ψjl(k −m+ τ)Ψh′(τ) +O(T−1).
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