Delli, Evangelia and Hodgson, Peter and Bentley, Matthew and Repiso Menendez, Eva and Craig, Adam and Lu, Qi and Beanland, Richard and Marshall, Andrew and Krier, Anthony and Carrington, Peter (2020) Mid-infrared Type-II InAs/InAsSb Quantum Wells Integrated on Silicon. Applied Physics Letters, 117 (13): 131103. ISSN 0003-6951
APL20_AR_06394.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (1MB)
Abstract
Direct integration of III–V semiconductor light sources on silicon is an essential step toward the development of portable, on-chip infrared sensor systems. Driven by the presence of characteristic molecular fingerprints in the mid-infrared (MIR) spectral region, such systems may have a wide range of applications in infrared imaging, gas sensing, and medical diagnostics. This paper reports on the integration of an InAs virtual substrate and high crystalline quality InAs/InAsSb multi-quantum wells on Si using a three-stage InAs/GaSb/Si buffer layer. It is shown that the InAs/GaSb interface demonstrates a strong dislocation filtering effect. A series of strained AlSb/InAs dislocation filter superlattices was also used, resulting in a low surface dislocation density of approximately 4 × 107 cm−2. The InAs/InAsSb wells exhibited a strong photoluminescence signal at elevated temperatures. Analysis of these results indicates that radiative recombination is the dominant recombination mechanism, making this structure promising for fabricating MIR Si-based sensor systems.