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Direct integration of III-V semiconductor light sources on silicon is an essential step towards the 

development of portable, on-chip infrared sensor systems. Driven by the presence of characteristic 

molecular fingerprints in the mid-infrared spectral region, such systems may have a wide range of 

applications in infrared imaging, gas sensing and medical diagnostics. This paper reports on the 

integration of an InAs virtual substrate and high crystalline quality InAs/InAsSb multi-quantum 

wells on Si using a three-stage InAs/GaSb/Si buffer layer. It is shown that the InAs/GaSb interface 

demonstrates a strong dislocation filtering effect. A series of strained AlSb/InAs dislocation filter 

superlattices were also used, resulting in a low surface dislocation density of approximately 4 × 107 

cm-2. The InAs/InAsSb wells exhibited strong photoluminescence signal at elevated temperatures. 

Analysis of these results indicate that radiative recombination is the dominant recombination 

mechanism, making this structure promising for fabricating MIR Si-based sensor systems. 

 

The presence of fundamental vibration absorption bands of several gaseous species in the 2 to 

12 μm mid-infrared (MIR) electromagnetic spectral region presents high technological potential 

for a wide range of applications, including absorption spectroscopy, environmental monitoring, 

chemical sensing and medical diagnostics. MIR silicon (Si) photonics has attracted great interest 

due to its potential to realize lab-on-chip optoelectronic systems. Si wafers have numerous 

advantageous properties, such as their large area, improved robustness and low cost.1 Fabrication  
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compatibility with mature CMOS industrial technology is an additional benefit. In recent years, 

the development of Si-based MIR passive electronic components such as waveguides and 

resonators enhanced the prospect of low-cost, fully integrated photonic circuits2. However, 

fabrication of high-performance group IV-based light emitting and detection devices is still 

challenging, mainly due to the indirect band gap of Si. In contrast, many III-V compound 

semiconductors have direct bandgaps and robust photonic properties3. Therefore, integration of 

III-Vs onto Si or silicon-on-insulator (SOI) platforms is seen as the most promising approach for 

the fabrication of group-IV compatible light sources. Presently, III-V photonic components are 

connected on Si platforms mainly using bonding technologies. Even though such fabrication 

processes have been used to develop hybrid III-V-on-Si infrared sensors and laser arrays4, large 

scale application is still challenging due to the complexity and increased production cost of these 

techniques. Thus, direct heteroepitaxial growth of III-Vs on Si is considered one of the most 

promising methods for producing dense optoelectronic integrated circuits at high volume. 

However, even this approach faces major physical challenges due to material dissimilarities. The 

polar/non-polar character of the III-V/Si interface, large lattice mismatch and thermal expansion 

coefficient differences introduce various crystal defects into the epilayer, such as antiphase 

domains (APDs) and threading dislocations (TDs). These defects can strongly degrade the 

performance of optical devices and therefore high-quality epitaxial growth is required. 

InAs and InAs-based compounds are one of the most promising candidates for infrared 

photonic and electronic applications due to their high electron mobilities5 and tunable, direct-

bandgap, which spans across the infrared spectral region. Furthermore, type-II InAs-based 

structures, such as InAs/InAsSb quantum wells (QWs) and superlattices (SLs)6, provide 

remarkable flexibility to engineer the band structure, enabling suppression of Auger recombination 

whilst demonstrating defect tolerance due to the placement of defect states above the conduction 

band edge7. However, deposition of InAs on a planar (100) Si surface occurs by the formation of 

large InAs islands during the growth of the first monolayers, resulting in a high density of stacking 

faults8 and APDs9. Early work on the epitaxial growth of InAs on Si focussed on the use of a GaAs 

intermediate layer10,11,12. However the large lattice mismatch between InAs and GaAs (~7%) 

resulted in a highly defective interface with a large density of threading dislocations10. More recent 

work has investigated the use of GaP/Si13 and Ge-on-Si combined with an AlInAs graded buffer 
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layer14 to accommodate the large lattice mismatch between InAs and Si. This led to the subsequent 

demonstration of a room temperature InAs p-i-n photodetector. InAs-based SLs15 and QCLs16,17 

have also been demonstrated on Si using a GaSb bulk buffer layer to help accommodate the high 

misfit strain. High performance MIR InAs/InAsSb SL photodetectors18 on Si have also recently 

been developed using a GaSb buffer layer grown by molecular beam epitaxy (MBE). This 

consisted of an AlSb interfacial misfit array and a two-temperature-step GaSb buffer layer which 

suppressed the vertical propagation of threading dislocations. The work reported in this paper 

describes an alternative method to integrate high crystalline quality InAs onto Si using this 

GaSb/Si buffer as an intermediate transition layer. Additionally, MIR type-II InAs/InAsSb multi-

quantum wells (MQWs) were heteroepitaxially grown on top of a three-stage InAs/GaSb/Si buffer.  

Samples were grown using a solid source Veeco GENxplor MBE system on Si wafers with a 

4° miscut towards the [0-11] direction. The Si substrates were prepared for growth using an in-situ 

thermal cleaning procedure at temperatures up to 1000 °C. Initially a thin (17 monolayer) AlSb 

nucleation layer was deposited, followed by a 2 μm thick GaSb buffer layer using a two-step 

growth temperature technique (490 °C and 515 °C).  This provides a smooth, APD free GaSb 

epilayer on Si with a lattice constant close to InAs. Details of the Si wafer cleaning technique, the 

growth of the GaSb buffer layer and the surface characterization have been described 

previously18,19. Next, an InAs-based buffer was grown to provide a hybrid InAs-on-Si platform. 

This consisted of a thick 1 μm InAs layer and a series of AlSb/InAs dislocation filter superlattices 

(DFSLs) as shown in Figure 1(a). Each superlattice period consisted of five repeats of AlSb (10 

nm)/ InAs (10 nm), with a total of five periods, each separated by a 500 nm thick InAs spacer. 

Strain at the interface between the layers of the DFSLs encourages bending of the TDs, increasing 

the likelihood that two will intercept or annihilate, leading to a reduction of the TDs density in 

subsequent layers. The DFSLs were grown using a low growth temperature of 450 °C, to minimize 

the exchange of group-V anions at the InAs/AlSb interface, and at growth rates of 1ML/sec and 

0.31 ML/sec for the InAs and AlSb layers respectively. The bulk InAs layers (1μm thick InAs 

layer and spacer layers) were grown using a temperature of 483 °C. Ramping of the substrate 

temperature between each DFSL set had the added benefit of annealing the sample, promoting 

migration of TDs and improving the material quality. Finally, type-II InAs/InAsSb MQWs for 

photoluminescence (PL) were grown consisting of ten periods of InAs/InAs0.95Sb0.05 with each 
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period having a thickness of 31 nm (InAs = 23 nm, InAsSb = 8 nm). An optimized shutter sequence 

consisted of 20 sec of As flux incident the InAsSb surface prior to the growth of InAs layers in 

order to minimize the interface composition gradient as described previously20.  

 

 

FIG. 1.  (a) Schematic of the InAs/InAsSb MQW structure grown on GaSb/Si using the InAs-

based DFSL buffer structure. The thickness of the InAs-based buffer structure was 3.6 μm. (b) 

Calculated band structure of the InAs/InAsSb MQWs at 15 K showing the first electron band, the 

first two heavy hole bands, the first light hole band and the wavefunctions (Ψi2).  
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A JEOL 2100 transmission electron microscope (TEM) operating at 200 kV was used to collect 

the TEM images. AFM surface images were obtained using a Multimode Atomic Force 

Microscope in tapping mode and a Nanoscope 8 controller. The AFM scanning area was 10μm x 

10 μm. Electron channeling contrast images (ECCI) were collected using a Zeiss Gemini SEM 

with a solid-state backscatter detector operating at 20. An incident beam orientation at the 

intersection of the 220 and 2-20 Kikuchi bands was used to accurately measure the surface defect 

density. Finally, photoluminescence (PL) characterization was carried out using a Bruker Vertex 

70 Fourier Transform Infrared (FTIR) spectrometer, a 77 K InSb photodiode detector and an 

OptistatDN-V2 cryostat.  High-resolution X-ray diffraction (XRD) was carried out using a Bede 

QC200 diffractometer. Modeling of the diffraction pattern was used to determine the Sb 

composition and layer thicknesses of the InAs/InAsSb MQWs. The resulting values were then 

used to calculate the band structure and band offsets of the wells using Nextnano software18,21 (the 

bulk value of InAs, 6.0583 Å, was used in the simulations). Figure 1(b) shows the calculated type-

II band alignment of the InAs/InAsSb MQWs at low temperature (15 K) along with the electron, 

heavy hole and light hole levels. The transition energies between the electron ground state to the 

first and second heavy hole states were calculated as 355 meV and 381 meV respectively. 

Figures 2(a) and (c) together show the complete structure from the Si substrate to the MQWs.  

Figure 2(b) shows the GaSb/Si interface in detail with a high resolution lattice image and geometric 

phase analysis using Strain++22.  The 12.3% misfit strain is completely accommodated by an array 

of edge dislocations, which appears perfect at this small field of view but as shown in Fig. 2(a) 

actually gives rise to a significant density (~109 cm-2) of threading dislocations.  Most of these 

dislocations are deflected by the 0.62% strain at the InAs/GaSb interface, which helpfully leads to 

dislocation interactions and annihilation of threading dislocations23. This threading dislocation 

reduction was further improved by the inclusion of five dislocation filter superlattices as shown in 

Fig. 2(c).  A small density of microtwins (<106 cm-2) nucleated at the InAs:GaSb interface (not 

shown). As discussed by Okumura et al24, growth of InAs on GaSb proceeds with simultaneous 

formation of two dimensional islands alongside a step-flow mode. Generation of planar defects 

may be due to the formation of faceted InAs islands25.  The hybrid InAs-on-Si structure was also 

free of thermal cracks. AFM surface characterization of the sample revealed a root mean square 

(rms) surface roughness of 3 nm (Fig. 2(e)). This value is approximately 3 times lower than InAs 

layers grown on GaP/Si and 1.4 times lower than layers  
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FIG. 2. (a) Cross-sectional bright field g = 220 TEM image of the InAs/GaSb buffer, showing 

threading dislocations originating at the GaSb/Si interface. (b) High resolution image and 

geometric phase analysis of the GaSb/Si interface showing a regular array of Lomer dislocations 

and complete accommodation of 12.3% strain. (c) Dark field g = 002 image showing the five sets 

of AlSb/InAs dislocation filters with the MQW at the top of the structure. (d) AFM image (area: 

10 x 10 μm) and (e) ECCI image of the top surface showing threading dislocations with a density 

of ~4 × 107 cm-2. 

 

grown on Ge/Si26. The final threading dislocation density at the MQW layers and the top surface 

was approximately 4 × 107 cm-2, as shown in the ECCI image of Figure 2(d). This is significantly 

lower compared to that reported previously for GaSb/Si buffer layers18, confirming the strong 

filtering effect of the InAs-based DFSL buffer structure. 

The high-resolution XRD pattern of the InAs/InAsSb MQWs PL sample is shown in Figure 

3(a). Many well-defined and intense peaks can be observed, indicating the excellent crystalline 

quality of the structure. These peaks are attributed to the wells, the DFSLs and the bulk InAs, GaSb 

and Si materials. A simulation of the XRD pattern suggested a MQW period thickness of 31.2 nm 

and an Sb content 5.2 % in the InAsSb layers, which is in excellent agreement with the target 

values (Sb: 5%, period thickness: 31 nm). The XRD data suggests that the individual thickness of 

the layers is 23.2 nm and 8 nm for the InAs barrier and the InAsSb quantum wells respectively. 

Figure 3(b) shows a high-resolution TEM image of the MQWs demonstrating the formation of 
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abrupt interfaces with low Sb segregation. Furthermore, the wells displayed a planar growth mode 

without any wavy, defect related deformations which can occur for growth on Si17. 

 

FIG. 3.  (a) Experimental and simulated ω-2θ XRD pattern of the MQW sample. (b) Cross 

section high-resolution TEM image showing the high quality InAs/InAsSb MQW structure. 

 

The optical properties of the InAs/InAsSb MQWs PL sample were then investigated. Power 

dependent photoluminescence (PL) measurements of the InAs/InAsSb MQW sample were carried 

out at 15 K. As shown in Figure 4(a), three emission peaks were observed: The first peak, at 351 

meV, is in excellent agreement with the theoretically predicted e1-hh1 transition energy of 355 

meV. The second peak, at 374 meV, is in agreement with the 381 meV theoretically predicted e1-

hh2 transition which is allowed due to the characteristic type-II band alignment of the MQWs. The 

third peak is attributed to the 400 meV InAs band-to-band transition. At low laser excitation 

power,the spectra is dominated by the e1-hh1 transition. With increasing laser excitation power, 

the relative intensity of e1-hh2 increases. The inset of Figure 4(a) shows the integrated PL intensity 

of the e1-hh1 versus the laser excitation power. The data were fitted using equation27: 

                                                                      IPL = aPβ                                                                              (1), 

where IPL is the integrated intensity, P is the laser excitation power, a is a constant and β is the 

gradient of the slope related to the dominant recombination process. A gradient close to 1/2, 1 or 

3/2 indicates the dominance of Shockley-Read-Hall (SRH), radiative or Auger recombination 

respectively. The gradient, β, was found to be 0.98 ± 0.02, indicating that radiative recombination 
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is the dominant recombination process within the wells. This demonstrates the excellent crystalline 

quality of the sample, with any remaining threading dislocations having only a negligible effect 

on the optical properties. This could be attributed to the position of the localized defect states above 

the conduction band for a Ga-free type-II MQWs providing a defect-tolerant structure7. 

 

FIG. 4.  (a) PL spectra measured for the InAs/InAsSb MQWs at 15 K for different laser 

excitation powers. The inset shows the integrated PL intensity dependence on laser excitation 

power. (b) Temperature dependent PL spectra measured using maximum laser excitation power. 

The numbers on the right of the spectra show the relative intensities. The lines are guides to the 

eye indicating the shift of the peaks. 
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Figure 4(b) shows the temperature dependent photoluminescence spectra obtained for the 

MQWs demonstrating strong emission at elevated temperatures. With increasing temperature up 

to 300 K all peaks show a shift towards lower energies, with the edge of e1-hh1 transition peak 

becoming coincident with the CO2 atmospheric absorption wavelengths. Atmospheric absorption 

occurred within the optical path of the external light beam between the cryostat, where the sample 

was placed, and the FTIR detector. The e1-hh2 transition peak increases in intensity for 

temperatures higher than 200 K due to the thermal excitation of holes from the first heavy hole to 

the second heavy hole band as a result of the small, 26 meV, heavy hole band splitting. 

Furthermore, for temperatures higher than 180 K the InAs peak becomes significantly stronger 

relative to the QW peaks as a result of thermalisation of holes out of the MQWs due to the relatively 

small confinement energy of 81 meV. This could be improved by increasing the Sb content inside 

the QW. 

In summary, a MIR InAs/InAsSb MQW structure, which was heteroepitaxially grown on 

silicon using an InAs-based buffer structure, exhibited strong photoluminescence signal at room 

temperature. TEM images revealed the strong threading dislocation filtering effect of the 

InAs/GaSb interface. A series of InAs-based dislocation filter superlattices were used to confine 

any remaining threading dislocations to the underlying structure. Surface characterization of the 

sample revealed a smooth surface with a surface dislocation density about an order of magnitude 

lower than the GaSb buffer layer surface. Finally, the InAs/InAsSb MQWs, which were grown on 

top of the InAs-based DFSL buffer, exhibited a strong photoluminescence signal covering the 

spectral range from approximately 3.5 to 4.2 μm. At low temperatures, the spectra were dominated 

by emission from the e1-hh1 transition. With increasing temperature above 200 K, the e1-hh2 

transition becomes dominant due to the thermal excitation of holes from the first to the second 

heavy hole states. These results demonstrate that InAs/InAsSb MQW emitters can be integrated 

onto Si using InAs-based DFSLs and GaSb buffer layers, which is an important step in the 

development of high efficiency, cost-effective MIR light sources for sensor systems. 

The authors would like to thank the EPSRC [grant number EP/N018605/1], the Royal 

Academy of the Engineering [grant number 10216/114], the Joy Welch Educational Charitable 

Trust and the Lancaster University Research Committee for the financial support for this work. 

The underlying data in this paper is available from https//….. 
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