The utility of topic modelling for discourse studies

Brookes, Gavin and McEnery, Anthony Mark (2019) The utility of topic modelling for discourse studies. Discourse Studies, 21 (1). pp. 3-21. ISSN 1461-4456

[thumbnail of Brookes McEnery Discourse Studies accepted version]
Microsoft Word (Brookes McEnery Discourse Studies accepted version)
Brookes_McEnery_Discourse_Studies_accepted_version.docx - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.

Download (81kB)

Abstract

This article explores and critically evaluates the potential contribution to discourse studies of topic modelling, a group of machine learning methods which have been used with the aim of automatically discovering thematic information in large collections of texts. We critically evaluate the utility of the thematic grouping of texts into ‘topics’ emerging from a large collection of online patient comments about the National Health Service (NHS) in England. We take two approaches to this, one inspired by methods adopted in existing topic modelling research and one using more established methods of discourse analysis. In the study, we compare the insights produced by each approach and consider the extent to which the automatically generated topics might be of use to discourse analysts attempting to organise and study sizeable datasets. We found that the topic modelling approach was able to group texts into ‘topics’ that were truly thematically coherent with a mixed degree of success while the more traditional approach to discourse analysis consistently provided a more nuanced perspective on the data that was ultimately closer to the ‘reality’ of the texts it contains. This study thus highlights issues concerning the use of topic modelling and offers recommendations and caveats to researchers employing such approaches to study discourse in the future.

Item Type:
Journal Article
Journal or Publication Title:
Discourse Studies
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3300/3310
Subjects:
?? corpus linguisticscorpus-assisted discourse studieslatent dirichlet allocationpatient feedbacktopic modellinglinguistics and languagecommunicationsocial psychologyanthropology ??
ID Code:
126379
Deposited By:
Deposited On:
12 Jul 2018 10:04
Refereed?:
Yes
Published?:
Published
Last Modified:
03 Dec 2024 00:34