Prendergast, Garreth and Tu, Wenhe and Guest, Hannah and Millman, Rebecca and Kluk, Karolina and Couth, Samuel and Munro, Kevin and Plack, Christopher John (2018) Supra-threshold auditory brainstem response amplitudes in humans : Test-retest reliability, electrode montage and noise exposure. Hearing Research, 364. pp. 38-47. ISSN 0378-5955
acceptedMS.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.
Download (6MB)
Abstract
The auditory brainstem response (ABR) is a sub-cortical evoked potential in which a series of well-defined waves occur in the first 10 ms after the onset of an auditory stimulus. Wave V of the ABR, particularly wave V latency, has been shown to be remarkably stable over time in individual listeners. However, little attention has been paid to the reliability of wave I which reflects auditory nerve activity. This ABR component has attracted interest recently, as wave I amplitude has been identified as a possible non-invasive measure of noise-induced cochlear synaptopathy. The current study aimed to determine whether ABR wave I amplitude has sufficient test-retest reliability to detect impaired auditory nerve function in an otherwise normal-hearing listener. Thirty normal-hearing females were tested, divided into equal groups of low- and high-noise exposure. The stimulus was an 80 dB nHL click. ABR recordings were made from the ipsilateral mastoid and from the ear canal (using a tiptrode). Although there was some variability between listeners, wave I amplitude had high test-retest reliability, with an intraclass correlation coefficient (ICC) comparable to that for wave V amplitude. There were slight gains in reliability for wave I amplitude when recording from the ear canal (ICC of 0.88) compared to the mastoid (ICC of 0.85). The summating potential (SP) and ratio of SP to wave I were also quantified and found to be much less reliable than measures of wave I and V amplitude. Finally, we found no significant differences in the amplitude of any wave components between low- and high-noise exposure groups. We conclude that, if the other sources of between-subject variability can be controlled, wave I amplitude is sufficiently reliable to accurately characterize individual differences in auditory nerve function.