A novel unsupervised Levy flight particle swarm optimization (ULPSO) method for multispectral remote-sensing image classification

Li, Huapeng and Zhang, Shuqing and Zhang, Ce and Li, Ping and Cropp, Roger (2017) A novel unsupervised Levy flight particle swarm optimization (ULPSO) method for multispectral remote-sensing image classification. International Journal of Remote Sensing, 38 (23). pp. 6970-6992. ISSN 0143-1161

[thumbnail of s1-ln27339122127405934-1939656818Hwf979743993IdV119099487227339122PDF_HI0001]
Preview
PDF (s1-ln27339122127405934-1939656818Hwf979743993IdV119099487227339122PDF_HI0001)
s1_ln27339122127405934_1939656818Hwf979743993IdV119099487227339122PDF_HI0001.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.

Download (2MB)

Abstract

The rapid development of earth observation technology has produced large quantities of remote-sensing data. Unsupervised classification (i.e. clustering) of remote-sensing images, an important means to acquire land-use/cover information, has become increasingly in demand due to its simplicity and ease of application. Traditional methods, such as k-means, struggle to solve this NP-hard (Non-deterministic Polynomial hard) image classification problem. Particle swarm optimization (PSO), always achieving better result than k-means, has recently been applied to unsupervised image classification. However, PSO was also found to be easily trapped on local optima. This article proposes a novel unsupervised Levy flight particle swarm optimization (ULPSO) method for image classification with balanced exploitation and exploration capabilities. It benefits from a new searching strategy: the worst particle in the swarm is targeted and its position is updated with Levy flight at each iteration. The effectiveness of the proposed method was tested with three types of remote-sensing imagery (Landsat Thematic Mapper (TM), Flightline C1 (FLC), and QuickBird) that are distinct in terms of spatial and spectral resolution and landscape. Our results showed that ULPSO is able to achieve significantly better and more stable classification results than k-means and the other two intelligent methods based on genetic algorithm (GA) and particle swarm optimization (PSO) over all of the experiments. ULPSO is, therefore, recommended as an effective alternative for unsupervised remote-sensing image classification.

Item Type:
Journal Article
Journal or Publication Title:
International Journal of Remote Sensing
Additional Information:
This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Remote Sensing on 24/08/2017, available online: http://www.tandfonline.com/10.1080/01431161.2017.1368102
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1900/1900
Subjects:
?? general earth and planetary sciencesearth and planetary sciences(all) ??
ID Code:
87453
Deposited By:
Deposited On:
24 Aug 2017 14:20
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Nov 2024 01:13