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The rapid development of earth observation technology has produced large quantities of remote 

sensing data. Unsupervised classification (i.e. clustering) of remote sensing image, an important 

means to acquire land use/cover information, has become increasingly in demand due to its 

simplicity and ease of application. Traditional methods such as k-means struggle to solve this 

NP-hard (Non-deterministic Polynomial hard) image classification problem. Particle swarm 

optimization (PSO), always achieving better result than k-means, has recently been applied to 

unsupervised image classification. However, PSO was also found to be easily trapped on local 

optima. This paper proposes a novel unsupervised Levy flight particle swarm optimization 

(ULPSO) method for image classification with balanced exploitation and exploration capabilities. 

It benefits from a new searching strategy: the worst particle in the swarm is targeted and its 

position is updated with Levy flight at each iteration. The effectiveness of the proposed method 

was tested with three types of remote sensing imagery (Landsat TM (Thematic Mapper), FLC 

(Flightline C1), and QuickBird) that are distinct in terms of spatial and spectral resolution, and 

landscape. Our results showed that ULPSO is able to achieve significantly better and more stable 

classification results than k-means and the other two intelligent methods based on genetic 

algorithm (GA) and particle swarm optimization (PSO) over all of the experiments. ULPSO is, 

therefore, recommended as an effective alternative for unsupervised remote sensing image 

classification.  

1．．．．Introduction 

Land use/cover data, reflecting the basic natural and social processes, plays an important role 

in the earth sciences (Loveland et al. 2000; de Colstoun et al. 2006; Huang and Laffan 2009; 

Deng et al. 2015). It serves as the basis for a variety of predictive models (e.g. ecosystem, 

hydrologic, and atmospheric models) that simulate the functioning of the Earth system 

(Bounoua et al. 2002; Jung et al. 2006; Verburg et al. 2011). Furthermore, land use/cover data 

is essential to understand the complex interactions between human activities and global 

change (Bonan, 1997; Gong et al. 2013). Currently, it is widely accepted that remote sensing 
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is the mainstream means to produce land cover data because of its distinct advantages over 

fieldwork including cost-effectiveness, instantaneous measurement, synoptic view, and high 

multi-temporal coverage (Li et al. 2016b). Yet, remote sensing data does not mean that 

directly usable information is available. In fact, classifying remote sensing image to practical 

land cover data is regarded as one of the core tasks of the remote sensing community (Li et al. 

2011; Wilkinson 2005).  

Generally speaking, there are three basic learning approaches to image classification, 

namely supervised, semi-supervised and unsupervised. Although supervised methods 

generally produce relatively accurate results, they involve a significant amount of human 

effort for training sample collection (Duda and Canty 2002). Semi-supervised methods utilize 

a relatively small amount of labeled data to aid unsupervised training for image classification 

(Camps-Valls et al. 2007). In other words, training samples, whose acquisition is 

labour-intensive and time consuming, are required either in the supervised or in the 

semi-supervised. However, along with the fast development of earth observation technology, 

remote sensing data set grows rapidly with massive quantities of data currently archived, thus 

posing a great challenge for the two types of approaches. In contrast, unsupervised (i.e. 

clustering) methods are in no need of training samples, thereby dawning increasingly 

attention in the remote sensing community (Yu et al. 2012; Xu et al. 2013).  

Two commonly used unsupervised methods, k-means and fuzzy c-means (FCM), in which 

simple iterative rules are employed, generally converge rapidly (Li et al. 2016a). However, 

they often have difficulty reaching the global optimal solution (Bandyopadhyay and Maulik 

2002; Yildirim 2014). As a matter of fact, unsupervised image classification can be 

transformed into an optimization problem, to which artificial intelligent algorithms could take 

full advantage. In consequence, methods such as genetic algorithm (Maulik and 

Bandyopadhyay 2000) and artificial immune systems (Zhong et al. 2006) have been 

employed for image clustering. Recently, particle swarm optimization (PSO), a newly 

proposed nature-inspired algorithm, has become popular because of its impressive 

performance when solving a broad range of optimization problems such as function 

optimization (Seo et al. 2006), flow-shop scheduling (Tseng et al. 2008), and image 

processing (Chang et al. 2009). The feasibility of PSO in solving the complex remote sensing 

image classification has also been demonstrated (Omran et al. 2005; Wong et al. 2011; 

Mukhopadhyay et al. 2015). However, some studies found that PSO was more likely to 

become trapped on local optima when solving large-scale complex problems (like 

multi-peak-searches) (Das et al. 2016), such as the image clustering problem (Li et al. 2016b). 

Currently, the global best solution is employed in the evolution process of PSO (called 

“elitism strategy”) to accelerate the convergence of PSO. However, this might cause the 

swarm to converge prematurely (i.e. on local optima) since population diversity decreases 

with the evolution of particles (Yu et al. 2013), leading to a local optimum without 

guaranteeing global convergence (Yang 2010).  

Some efforts have been made to improve the performance of PSO-based image clustering. 

For example, Xu and Zhang (2009) developed a fuzzy PSO method for image clustering. 

Paoli et al. (2009) clustered hyperspectral image by using multiobjective PSO. Yang et al. 

(2009) presented a hybrid clustering algorithm based on PSO and K-harmonic means. Wang 

et al. (2012) employed PSO to increase the accuracy of sub-pixel mapping created by a 
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sub-pixel/pixel spatial attraction model (SPSAM). Naeini et al. (2014) integrated PSO with 

decision analysis to improve the dynamic clustering of image. Most of the current studies, 

however, just combined other algorithms or classifiers with PSO in hope of gaining a better 

clustering result, whereas few efforts have been dedicated to the improvement of PSO from a 

standpoint of searching mechanism. Such a fundamental innovation of PSO would benefit its 

applications not only in image clustering, but also in the other fields. 

In this paper, a novel unsupervised Levy flight particle swarm optimization (ULPSO) 

method is proposed for remote sensing image classification. The main contribution of this 

work is the establishment of a new searching mechanism for PSO by using Levy flight, which 

is a class of random walk employed by some animals when foraging foods (Edwards et al. 

2007). In theory, Levy flight with various step lengths exhibiting non-Gaussian distributions 

could maintain the level of population diversity of standard PSO, thereby improving the 

likelihood of approaching (or reaching) the optimal solution to the classification problem. To 

the best of our knowledge, this is the first application of Levy flight to improve the swarm 

intelligence based image classification. The proposed method has been tested with three kinds 

of multispectral images (Landsat TM (Thematic Mapper), FLC (Flightline C1), and QuickBird) 

that are different in terms of spatial and spectral resolution, and landscape. The experiments 

results have demonstrated the superiority of the proposed method.  

2 Particle swarm optimization and Levy flight 

2.1 Particle swarm optimization 

PSO, a meta-heuristic optimization algorithm (Kennedy and Eberhart 1995), is inspired by the 

behaviours of bird flocking and fish schooling in the process of food searching. It acquires 

intelligence through mutual communication and cooperation among the individuals (Paoli et 

al. 2009). For PSO, a particle of swarm, denoting a candidate solution to the optimization 

problem, is initially assigned by a random position within the search space; the particle then 

strives to move towards the promising positions according to its own experience and the 

experience from neighbour particles, in other words, the particle updates positions by tracking 

its personal best position (pbest) and the global best position (gbest) memorized in each 

iteration (Masoomi et al. 2013); by doing so, the whole swarm gradually moves to the 

promising areas, thus approaching (or achieving) the optimal solution in the end. 

 

Figure 1 is here 

 

Figure 1 illustrates the evolution process of a particle in a 2-D spatial space (Liu et al. 

2008). In the figure, )(tiX  
and )(tiV , respectively, denote the position and velocity of 

thei -th particle at time t ;  
pbest
iX  and 

gbest
X  are the best positions found by the i -th 

particle and the whole swarm, respectively. Two velocities 
pbest
iV  and 

gbest
V pointing to 

pbest
iX  and 

gbest
X , respectively, are then combined with )(tiV  to generate the velocity 

)1( +tiV  of the particle at time 1+t . The particle then moves to its new position 

)1( +tiX  with the newly generated velocity of )1( +tiV , which is closer to the global 

optimal solution. A detailed calculation of velocity and position of particle can be found in 

Section 3. By iterating the above process, the particle swarm could progressively approach the 
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global optimum.   

2.2 Levy flight 

It is widely accepted that randomization exerts an important effect on both exploration and 

exploitation of meta-heuristic algorithm. The essence of such randomization is the random 

walk, a process consisting of taking a number of consecutive random steps (Yang 2010). 

Brownian random walks (Yang 2010), obeying a Gaussian distribution, are the most popular 

walks in nature. Levy flight, a class of random walk, has the potential to maximize the 

efficiency of resource searching in uncertain environments (Nayak et al. 2009). Thus, it has 

been employed by a variety of animals when foraging foods, such as albatrosses and fruit flies, 

and spider monkeys (Edwards et al. 2007). Similarly, researchers found that Levy flight could 

also improve the performance of nature-inspired algorithms (Senthilnath et al. 2013; 

Senthilnath et al. 2016). 

In fact, Levy stochastic process with diverging moments can be characterized by 

probability density (called Levy distribution). Once the distribution is given, the step length 

(s ) of Levy flight can then be estimated. In general, the Levy distribution ( )(sL ) can be 

represented with a simple power-law formula )(sL ~
β−−1

s , where 20 ≤< β  is an index 

controlling the shape of the distribution. Mathematically, a Levy distribution can be simply 

defined as (Yang and Deb 2013):     








∞<<<

−−
−

=

otherwise0

0
)(

1
]
)(2

exp[
π2)( 23

s,
ss,,sL /

µ
µµ

γγ
µγ ,     (1)

 

where µ  is the location parameter, and γ  is a scale parameter controlling the scale of 

distribution.  

Levy distribution can also be described in terms of Fourier transformation as shown in 

Equation (2) (Yang 2010): 

                      
20],exp[)( ≤<−= βα

β
kkF ,                    (2)   

where α  and β
 
determine the distribution of the Fourier transformation. Specifically,  

α  ( ]1,1[−∈ ) is a scale parameter (known as skewness or scale factor) indicating the skew 

direction; β  is a parameter that controls the shape of the probability distribution 

within ]2,0( : the smaller the β  is, the longer the possible jump is because of the longer tail.  

Since the analytic form of the integral is unobtainable for general β , a few special cases, 

instead, were usually employed in real applications. In particular, for 1=β  and 2=β , 

the Fourier transform corresponds to a Cauchy distribution ( ]exp[)( kkF α−= ) and a 

Gaussian distribution ( ]exp[)( 2kkF α−= ), respectively. 

3 Unsupervised Levy flight particle swarm optimization method 

The ULPSO method was developed from PSO and Levy flight for the purpose of 

unsupervised remote sensing image classification. Suppose a remote sensing image consists 

of N  pixels with D  attributes and K  classes for classification. In principle, ULPSO 

classifies the image by searching for a fixed number ( K ) of optimal cluster centres 
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( 1C , 2C ,…, KC ) within 
Dℜ , so that the clustering metric ( M ), i.e. the sum of the Euclidean 

distances from the pixels to their respective cluster centres (Maulik and Bandyopadhya 2000), 

can be minimized. The clustering metric can be mathematically denoted as follows: 

                         

∑ ∑
= ∈

−=
K

i x
ij

ij

zxM
1 C

,    

         

            (3) 

where jx  is an arbitrary pixel of the image belonging to class i ( =i 1, 2, …, K ), with 

iz  as its cluster centre, and j  is the pixel number of class i .  

Figure 2 shows the flowchart of ULPSO, in which the main procedures, including particle 

position initialization, fitness evaluation, particle position searching, pbest and gbest updating, 

and position searching by Levy flight, are detailed in the next few sections. 

 

Figure 2 is here 

 

3.1 Particle representation and initialization 

In PSO, a particle, denoting a candidate solution to the problem of clustering centre 

optimization, is formed by connecting the cluster centre of each class represented with a 

sequence of real numbers. The length of the particle is KD ×  (K , the number of classes), 

where the first D  positions represent the cluster centre of class one, the second D  

positions represent that of class two, and so on. Suppose the number of released particles 

(Npop) is n , at the beginning of iteration, each particle of the swarm is randomly assigned a 

position, which can be generated as follows: 

                      )( minmaxmin
jjjj

i XXrXX −+= ,                      (4) 

where 
j
iX  is the position at the j -th attribute for the i -th particle, 

jX min  and 
jX max  are 

the minimum and maximum values of the j -th attribute, respectively, and r  is drawn from 

a uniform distribution [0, 1].  

3.2 Fitness evaluation 

The clustering metric ( M ) is inversely proportional to the quality of clustering, i.e. the lower 

the value of cluster metric, the better the quality of the clustering, since pixels in the same 

cluster should be as close (i.e. have high similarity) as possible (Li et al. 2016a). Thus, the 

fitness function is defined on the basis of clustering metric as follows: 

                            )M/(f 11 += ,                         (5) 

where M  is calculated using Equation (3). 

The fitness of a single particle at each iteration is calculated using Equation (5). For the 

i -th particle, its fitness (
pbest
if ) as well as the position (

pbest
iX ) are then memorized. In 

addition, the global best fitness of the whole swarm (
gbestf ) and its corresponding position 

(
gbest

X ) are also identified and recorded, respectively. 

3.3 Optimal position searching of particle 

After having assessed the fitness, the velocity of each particle is updated using the following 
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equation:   

        
))(())(()1( gbest

22
pbest

11 trctrcwt iiiii XXXXVV −+−+=+ , 
   

(6) 

where )1( +tiV  and )(tiV  are the velocities of the i -th particle at time 1+t  and t , 

respectively; 
pbest
iX  and )(tiX  are the historical best position and the position at time t  

for the i -th particle, respectively; 
gbest

X  is the historical best position of the whole swarm; 

1r  
and 2r  

are two uniformly distributed random numbers in the range [0, 1]; 1c  
and 2c  

are acceleration coefficients; w  is the inertia weight determining the effect of velocity at 

time t  on the current (at time 1+t ) velocity. 

Accordingly, the position of each particle is involved with the newly generated velocity 

(Figure 1): 

                      1)()(1)( ++=+ ttt iii VXX ,                    (7) 

where )1( +tiX  and )(tiX  are the positions of the i -th particle at time 1+t  and t , 

respectively. 

3.4 Updating pbest and gbest 

When all particles of the swarm having finished their movements, the corresponding fitness 

values are recalculated using Equation (5). The personal best position for the i -th particle is 

then updated in the following way:

  

 

                 




 +<+

=
otherwise

)1()1(

pbest

pbest

pbest

i

iii
i

tff,t

X

X
X , 

              

(8) 

where )1( +tfi  denotes the fitness of the i -th particle at time 1+t .  

The global best position can be assigned as follows:

   



 +<+

=
otherwise

)1()1(
gbest

gbestgbestgbest
gbest

X

X
X

tff,t
,

         

 (9) 

where )1(gbest +tf  denotes the best fitness of the whole swarm at time 1+t , with 

)1(gbest +tX  as the corresponding position. 

3.5 Global searching by Levy flight 

As mentioned before, Levy flight is more efficient than Brownian random walks when 

exploring in a large-scale search space. There are several ways of simulating Levy 

distribution. One of the most efficient ways is to employ the Mantegna algorithm (Mantegna 

1994), in which the step length s  of Levy flight can be calculated as follows: 

                          

λ
ν

µ

β
1

010.s = ,                              (10) 

where the factor 0.01 comes from the fact that L /100 (L = 1) is the typical step size of 
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walks/flights (Yang 2010), where L  is the typical length scale; β  
is a constant varying 

between 1 and 2; µ , ν and λ  are, respectively, drawn from normal distributions: 

                µ ~ ),0( 2
µσN , ν ~ ),0( 2

νσN , λ ~ )1,0(N ,              (11) 

where  

                       

,,

β
β

Γ

β
βΓ

vβ
1

2)
2

)(1
(

)
2

)sin(π(1

1

2

1)(
=



















+

+
=

−
σσ

β

µ

                

(12) 

where Γ is the gamma function.  

Global searching can be initiated by exploring new search areas. To enhance the swarm’s 

exploration capacity, the worst particle (i.e. the particle with the lowest fitness) at the current 

iteration is targeted and its position is then updated with Levy flight (steps ): 

sii += XX
new

,               

            

(13) 

where 
new
iX denotes the newly position for the i -th particle (the worst particle), whose 

original position is iX .  

The fitness of the updated particle is subsequently recalculated. 

3.6 Stopping condition 

Herein, the search iteration stops only when the number of maximum iterations (Miter) is 

reached. In this case, the optimal position, i.e. a group of cluster centres as the solution to the 

unsupervised classification problem, is acquired. The image is then classified on the basis of 

the solution. 

3.7 Pseudocode of ULPSO 

The proposed ULPSO can be represented by using the following pseudocode: 

Initialize the control parameters (Npop, Miter, w, c1, and c2) 

Randomly initialize the positions of particles using Equation (4) 

Evaluate the fitness of particles using Equation (5) 

Memorize the gbest and pbest of particles 

while iter < Miter do 

       for i=1: Npop 

          Update the velocity of each particle using Equation (6) 

          Update the position of each particle using Equation (7) 

       end for 

Evaluate the fitness of new particles using Equation (5) 

for i=1: Npop 

Update pbest using Equation (8) 

end for 

Update gbest using Equation (9) 

Identify the particle with the lowest fitness  

Update the particle position with Levy flight using Equation (13) 
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Update the fitness of the updated particle using Equation (5) 

iter=iter+1 

end while 

Output the optimal solution 

4 Experiments and analysis 

The effectiveness of the proposed method was tested with three kinds of remote sensing 

images, namely Landsat TM, FLC, and QuickBird. At the same time, traditional k-means as 

well as two intelligent unsupervised classification methods based on standard genetic 

algorithm (denoted as UGA) and particle swarm optimization (denoted as UPSO), 

respectively, were also implemented for accuracy comparison (Srinivasan and Seow 2003). 

Note, an experiment denotes the classification of a particular imagery with the four methods 

(k-means, UGA, UPSO, and ULPSO), e.g. QuickBird experiment.  

The number of image clustering can be either predefined or estimated during iteration (i.e. 

automatic clustering). In an automatic clustering method, varied numbers of clusters, instead 

of a fixed one, are usually produced during iterations (Maulik and Saha 2010). The numbers 

of variables to be optimized may thus vary for different classification methods, leading to an 

incomparable classification environment. Therefore, this study uniformly assigned the 

number of clusters for all of the methods in each experiment.  

To evaluate the performance of methods quantitatively, a number of commonly used 

measures of classification accuracy were calculated for each classification, namely overall 

accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and kappa coefficient (κ). 

For detailed information on how to calculate these measures, readers are referred to the paper 

of Foody et al. (2002). 

4.1 Data sets 

Landsat TM: The imagery (Row/Path: 120/27) was collected by Landsat Thematic Mapper on 

27 August 2007. A subset of the image (sized by 310×310 pixels) over Zhalong National 

Nature Reserve (ZNNR) of China was chosen as our test image (Figure 3). It has six spectral 

bands (bands 1-5 and band 7) with spectral wavelengths ranging from 0.45 to 2.35 µm. The 

spatial of the image is 30 m. The image has a typical heterogeneous landscape, integrated by 

natural wetland and anthropic farmland. In reference to the field work, five classes including 

marsh, meadow, farmland, saline land, and water were identified for the image. A total of 

7607 samples (see Figure 3(b)) were gathered for evaluating the image classification results.  

FLC: The image was acquired by the M7 scanner over Tippecanoe County, Indiana, US, 

in June 1966 (Tadjudin and Landgrebe, 2000). A subset of the original image with a size of 

100×118 pixels and 12 multispectral bands was employed in this experiment. The spectral 

wavelengths of bands range from 0.40 to 1.00 µm. It is of a typical farmland landscape 

consisting of four classes: soybeans, rye, red clover, and wheat. A total of 7936 samples were 

available along with the image for accuracy assessment (Figure 4(b)). 

QuickBird: The image was gathered over the Yalvhe farm, Heilongjiang province, China, 

on 4 September 2005. The image provides 2.4 m spatial resolution in four multispectral bands 

with the spectral wavelength ranging from 0.45-0.90µm (Wang et al. 2004). A subset of the 

image with a size of 350×350 pixels, covering mostly farmland and woodland, was chosen 
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for this experiment. According to the field investigation, the image is mainly covered by five 

classes, namely paddy field, farmland, grass, forest, and shadow. A total of 5781 samples 

were collected to evaluate the classification results of the image (Figure 5(b)). 

4.2 Parameters initialization 

To make a fair comparison, the same values, i.e. the maximum iteration number of 1000 and 

population size of 40, were assigned for the common parameters of the three intelligent 

methods (UGA, UPSO, and ULPSO). In addition, in order to achieve comparable results with 

previous studies, other specific parameters that were widely adopted for each of the methods 

were utilized as follows: for UGA, generation gap sp  = 0.9, crossover rate cp  = 0.8, 

mutation rate mp  = 0.01 (Karaboga and Akay 2009); for UPSO and ULPSO, acceleration 

coefficients 21 cc =  = 1.8, inertia weight w = 0.6 (Vesterstrom and Thomsen 2004). As a 

benchmark, traditional k-means was also implemented with control parameters: the maximum 

iteration number = 1000, the pixel change threshold = 0%; the number of clusters assigned to 

the three images was five, four, and five, respectively. It is noted that candidate solutions of 

the UGA, UPSO, and k-means were initialized in the same way as ULPSO (i.e. by 

using Equation (4)).  

4.3 Classification Results 

Figures 3, 4 and 5 respectively show the land-cover classification results of the three 

experiments, i.e. the classifications of the three images achieved by the four methods 

(k-means, UGA, UPSO, and ULPSO). The corresponding classification accuracies including 

PA, UA, and OA of the four methods are summarized in Tables 1-3, respectively. Table 4 

provides the Kappa z-test results for the classifications. In general, ULPSO outperformed the 

other methods (k-means, UGA, and UPSO) over all three experiments. The overall accuracy 

achieved by ULPSO was higher than k-means, UGA, and UPSO by 19.01%, 11.80%, and 

11.31%, respectively, for the TM experiment, and by 25.62%, 6.13%, and 1.12%, 

respectively, for the FLC experiment. For the QuickBird experiment, the improvements were 

8.67%, 5.83%, and 0.83%, respectively (Table 3). 

 

Figures 3-5 are here  

 

For the TM experiment, a large part of marsh areas were misidentified as farmland in the 

k-means classification (Figure 3 (c)), resulting in low accuracies (both PA and UA) of both 

marsh and farmland (Table 1). The results of the three intelligent methods (UGA, UPSO, and 

ULPSO) were more accurate than k-means because of their better differentiations between 

marsh and farmland (Figure 3). However, both UGA and UPSO tended to overestimate the 

marsh class, thus leading to a low UA (lower than 62%) for the class. Fortunately, the 

proposed ULPSO could better identify the marsh class (UA > 82%), thereby providing the 

best classification accuracy. The Kappa z-test further indicated that ULPSO performed 

significantly better than k-means, UGA, and UPSO (Table 4). 

 

Tables 1-4 are here 
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For the FLC experiment, the performance of k-means was also very poor, in which a 

majority of wheat was misclassified as soybeans (Figure 4 (c)). UGA notably improved the 

identification of wheat, but mislabeled some rye pixels as wheat (Figure 4 (d)), leading to a 

low PA for wheat (< 76%) and UA for rye (< 80%) (Table 2). In comparison, satisfactory 

results (OA > 95%) were yielded by UPSO and ULPSO, in which the four classes were 

relatively well separated (Figure 4 (e, f)). Yet even so, ULPSO still outperformed UPSO in the 

experiment due to its better discrimination between wheat and rye (Figure 4 (f)). Thus, similar 

to the TM experiment, ULPSO achieved statistically significantly better result than k-means, 

UGA, and UPSO (Table 4). 

As for the QuickBird experiment, k-means and UGA produced lower but comparable 

classification results (with OA around 65%). In the k-means classification, only a small part 

of forest was correctly identified (Figure 5 (c)), resulting in an extraordinarily low PA for 

forest (< 20%). UGA improved the accuracy of forest, but a large part of grass was 

misidentified as forest (Figure 5(d)). In contrast, similar but better results were achieved by 

UPSO and ULPSO, with overall accuracies larger than 70%. The z-test results showed that 

ULPSO performed significantly better than k-means and UGA. The difference between UPSO 

and ULPSO was not significant, despite the slight outperformance of ULPSO over UPSO 

(Table 4). 

4.4 Robustness and searching capacity of methods 

To evaluate the robustness of the proposed method, ULPSO as well as k-means, UGA, and 

UPSO were implemented 30 times with randomly generated initial population for each 

experiment. The average OA and κ were summarized in Table 5. It can be observed from the 

table that the highest accuracy was obtained by ULPSO over all of the three experiments, 

followed by UPSO and UGA, while k-means demonstrated the worst. Besides, ULPSO 

worked much more stable (i.e. robust) than the other methods in view of its lower variance of 

accuracy (Table 5). To further compare the means of the classification accuracies produced by 

the four methods, the student’ t-test (Dietterich 1988) was performed on κ (Table 5). As 

shown in the table, the presented ULPSO beat the other methods in a statistically significant 

manner in the first two experiments. But there was no significant difference among the three 

intelligent methods in the QuickBird experiment, despite ULPSO yielded the highest average 

accuracy (Table 5). 

 

Table 5 is here 

 

The average clustering metric values (number of repetition: 30 times) running versus 

numbers of iterations were calculated to investigate the searching capacity of the methods. 

Figure 6 illustrated the corresponding results over the three experiments. It was shown that 

each method presented similar patterns over the three experiments. In specific, UGA had the 

slowest rate of convergence, thus incapable of acquiring a lower cluster metric value, even if 

reaching the maximum number of iteration. In comparison, the fastest convergence rate was 

achieved by k-means, which became stable in the early stages (about 60 iterations) of the 

optimization; a similar convergence pattern was revealed by UPSO, maturing at about 100 
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iterations (Figure 6). However, both k-means and UPSO converged to high-level values of 

clustering metric, indicating they were vulnerable to being fallen into local optimum 

prematurely. As for ULPSO, it not only maintained the same advantage of rapid convergence 

at the early optimization stage as UPSO, but also continuously and strongly optimized 

(decreased) the value of objective function, which stabilized at about 800 iterations (Figure 6). 

As a result, obviously lower clustering metric value was achieved by ULPSO, where Levy 

flight played a crucial role in helping PSO jump out of local optima and eventually 

approached (or reached) the optimal solution.  

 

Figure 6 is here  

 

4.5 Computational complexity analysis 

In this paper, the same number of outer iterations (Niter) was utilized in each method for the 

sake of a fair comparison. Therefore, the computational complexity of the four methods 

differs mainly from their numbers of inner loops. Suppose n , K  are the number of 

population and the number of clusters, respectively. Among the four methods, k-means, with  

K  inner loops and Niter outer iterations, has the least complexity: O(Niter K ); for UGA, it can 

be expressed as O(Niter(nK + snp +1/2 cnp + mnp )), where O(nK ) is the complexity of the 

objective function, while O( snp ), O(1/2 cnp ), and O( mnp ) denote that of the three operators 

respectively: selection, cross, and mutation; UPSO and ULPSO have a relatively high 

complexity: O(Niter( nK +2 n )) and O(Niter( nK +2 n + K )), respectively. Compared with 

UPSO, a little bit more complexity hold by ULPSO was noticed.  

The computing time of classifications in the three experiments is listed in Table 6. Note 

that all the three methods were implemented in a MATLAB environment, and run on a 

personal computer with 3.20-GHz CPU and 8.0-GB memory. As expected, the intelligent 

methods (UGA, UPSO, and ULPSO) required much more computation time than the simple 

k-means. This is because k-means uses only one candidate solution during each iteration of 

clustering, while 40 candidate solutions are simultaneously evolved for the three intelligent 

methods. The computational time was almost the same for UGA and UPSO, while a little bit 

more time was needed by ULPSO because of the computation of step length of Levy flight. 

But it is acceptable in view of the significant better results.  

 

Table 6 is here 

 

5 Discussion 

In this paper, the problem of image clustering is transformed into an optimization problem. 

The number of variables contained in each candidate solution is fixed, i.e. the product 

( KD × ) of dimensions of attributes ( D ) and the number of clusters (K ). The aim of 

clustering is to find out proper variables in the solution space to achieve an optimal solution, 

so that the clustering metric (objective function) can be minimized. However, it is not a trivial 

task since image clustering usually has a huge solution space. This paper is thus to establish 
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an effective and reliable searching mechanism in the space.  

The proposed ULPSO proves superior to traditional k-means, UGA, and UPSO over all of 

the three experiments. In UGA, candidate solutions were randomly crossed and mutated (Yen 

et al. 1998), without further seeking candidates around the current optimum. Achieving the 

slowest convergence rate (Figure 6), UGA is therefore in short of the necessary exploitation 

capacity for handling complex remote sensing image. As for UPSO, the evolution is carried 

out by considering the global (i.e. the whole swarm) optimal solution and personal (i.e. an 

individual particle) optima (Equation (6)). UPSO hence owns a high exploitation capacity 

(Kusetogullari et al. 2015), which well explains the reason of its rapid convergence (Figure 6). 

Yet, such an evolving strategy would make all individual particles resemble each other (Arani 

et al. 2013), thus having difficulty maintaining the diversity of population. As a consequence, 

the swarm tends to be premature (i.e. trapping on local optima) in the early evolution stage 

(Figure 6) due to the lack of exploration capacity (Kaveh and Zolghadr 2014).  

Satisfactorily, by adopting Levy flight, the proposed ULPSO method possesses not only 

the inherent exploitation capacity (like UPSO) but also a powerful exploration capacity, as 

illustrated by Figure 6. The searching step produced by Levy flight can differ in length, thus 

enabling to offer long steps with a certain probability (Yang 2010). The worst particle (with 

the lowest fitness), whose new position was assigned by Levy flight in each iteration, can then 

be served as a scout particle to pioneer new spaces. Such a searching strategy guarantees the 

local exploitation capability of the population; at the same time, the particles are able to travel 

throughout the whole solution space, thus providing a global searching ability. The integration 

of Levy flight and the PSO would provide a complementary behaviour in terms of both 

exploration and exploitation. Thanks to this novel searching strategy (the major contribution 

of this research), significant better results were achieved by ULPSO in comparison with 

UPSO. 

Some previous researches enhanced the PSO-based image clustering by integrating other 

algorithms (e.g. decision-making; Naeini et al. 2014) or classifiers (e.g. Support Vector 

Machine; Venkatalakshmi and Shalinie 2005). There are also some studies employing PSO to 

optimize other clustering algorithms (e.g. fuzzy c-means; Samadzadegan and Naeini 2011; 

Niazmardi et al. 2012). The basic searching strategy of PSO, however, has received little 

attention in the literature. Toward this end, Levy flight was introduced to enhance the 

exploration capacity of PSO, i.e. to fundamentally improve the algorithm from the underlying 

searching mechanism. That’s why different types of remote sensing images adopted in this 

study (including TM, FLC and QuickBird) were effectively handled by ULPSO. In fact, the 

proposed method is universally applicable, not only to different kinds of remotely sensed 

images but also to a variety of application programs of geosciences and remote sensing, such 

as image band selection (Su et al. 2014), land use allocation (Liu et al. 2013), and urban 

growth modeling (Feng et al. 2011).  

We note that a few early efforts had been made to improve PSO by Levy flight for 

function optimization, and presented the corresponding methods: Levy flight particle swarm 

optimization (LFPSO, Hakli and Uguz 2014) and particle swarm optimization with Levy 

flight (PSOLF, Jensi and Jiji 2016). However, the searching strategies employed in these 

methods were in short of balanced exploitation and exploration capabilities, thus having 

difficulty addressing the complex problem of image clustering. For LFPSO, a particle’s 
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position is updated by Levy flight, only if it cannot be improved after reaching a predefined 

searching time limitation. Such a searching mechanism may reduce the exploration capacity 

of LFPSO, since those continuously evolved particles with low fitness could still survive after 

a large number of iteration. This leads to a waste of valuable searching sources. Besides, it is 

hard to determine a proper value of searching time limitation. As for PSOLF, positions of as 

many as one-half particles are regenerated by Levy flight at each iteration, leading to an 

intense fluctuation of the population. This may substantially weaken the exploitation capacity 

of the method. By taking the TM experiment as an example, the searching capacity of the four 

PSO-based methods (i.e. UPSO, LFPSO, PSOLF, and ULPSO) was compared, with each 

method performed 30 times. As illustrated by Figure 7 in which variations of the average 

clustering metric values for each method were provided, the proposed ULPSO achieved the 

best result, followed by LFPSO and UPSO, while PSOLF performed the worst. Furthermore, 

better and more stable classification results could be achieved by the proposed method than 

the others as shown by Figure 8.  

 

Figures 7 and 8 are here  

 

6 Conclusions  

Unsupervised remote sensing image classification, often having an extremely large solution 

space, belongs to the family of NP-hard (Non-deterministic Polynomial hard) problems. 

Traditional k-means and common intelligent methods (such as genetic algorithm) tend to 

become trapped on local optima due to their limited exploitation and/or exploration 

capacities. In this paper, we developed a novel ULPSO methodology in which a new 

searching strategy with Levy flight was adopted for unsupervised image classification. 

Similar to UPSO with powerful exploitation ability, ULPSO converged very rapidly at the 

early optimization stage. More importantly, it could jump out of local optima and 

continuously approach (or reach) the optimal solution, thanks to the relatively powerful 

exploration capacity benefiting from Levy flight. Therefore, ULPSO is in possession of both 

exploration and exploitation capacities, which results in its superiority to the other three 

benchmark methods (k-means, UGA, UPSO), as well as to existing approaches (LFPSO and 

PSOLF) integrated by PSO and Levy flight. The proposed method is, thus, suggested to be an 

alternative for unsupervised remote sensing image classification.  

Despite having achieved promising results in general, ULPSO was still hard to cope with 

the very high resolution (VHR) image, as illustrated by Figure 5 in which serious 

'salt-and-pepper' phenomenon occurred. Incorporating spatial information of remote sensing 

image into ULPSO thus deserves further investigation. In addition, we would like to explore 

the possibility of developing an automatic clustering method based on the presented method. 

In that case, both intra criterion (clustering metric in our experiments) and inter criterion 

should be simultaneously considered in the process of optimization.  

 

Acknowledgements 

We would like to thank the editor and the four anonymous reviewers for their constructive 

Page 13 of 32

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

14 

 

comments which helped improve the paper substantially. 

 

Disclosure statement 

No potential conflict of interest was reported by the authors. 

 

Funding 

This research was supported by the National Natural Science Foundation of China (grant 

number: 41301465), the Scientific and Technological Development Program of Jilin Province 

(grant number: 20170520087JH), and the National Key Research and Development Program 

of China (2017YFB0503602). 

 

References 

Arani, B. O., P. Mirzabeygi and M. S. Panahi. 2013. "An improved PSO algorithm with a territorial 

diversity-preserving scheme and enhanced exploration-exploitation balance." Swarm and 

Evolutionary Computation 11: 1-15. doi:10.1016/j.swevo.2012.12.004. 

Bandyopadhyay, S. and U. Maulik. 2002. "Genetic clustering for automatic evolution of clusters and 

application to image classification." Pattern Recognition 35: 1197-1208. doi:Pii 

S0031-3203(01)00108-X. 

Bonan, G. B. 1997. "Effects of land use on the climate of the United States." Climatic Change 37: 

449-486. doi: 10.1023/A:1005305708775. 

Bounoua, L., R. Defries, G. J. Collatz, P. Sellers and H. Khan. 2002. "Effects of land cover conversion 

on surface climate." Climatic Change 52: 29-64.doi: 10.1023/A:1013051420309.  

Camps-Valls, G., T. V. Bandos and D. Y. Zhou. 2007. "Semi-supervised graph-based hyperspectral 

image classification." Ieee Transactions on Geoscience and Remote Sensing 45: 3044-3054. 

doi:10.1109/Tgrs.2007.895416. 

Chang, Y. L., J. P. Fang, L. N. Chang, J. A. Benediktsson, H. A. Ren and K. S. Chen. 2009. "Band 

Selection for Hyperspectral Images Based on Parallel Particle Swarm Optimization Schemes." 2009 

Ieee International Geoscience and Remote Sensing Symposium, Vols 1-5: 3509-3512. 

Das, P. K., H. S. Behera and B. K. Panigrahi. 2016. "A hybridization of an improved particle swarm 

optimization and gravitational search algorithm for multi-robot path planning." Swarm and 

Evolutionary Computation 28: 14-28. doi:10.1016/j.swevo.2015.10.011. 

De Colstoun, E. C. B. and C. L. Walthall. 2006. "Improving global scale land cover classifications with 

multi-directional POLDER data and a decision tree classifier." Remote Sensing of Environment 100: 

474-485. doi:10.1016/j.rse.2005.11.003. 

Deng, X. Z., Q. L. Shi, Q. Zhang, C. C. Shi and F. Yin. 2015. "Impacts of land use and land cover 

changes on surface energy and water balance in the Heihe River Basin of China, 2000-2010." 

Physics and Chemistry of the Earth 79-82: 2-10. doi:10.1016/j.pce.2015.01.002. 

Dietterich, T. G. 1998. "Approximate statistical tests for comparing supervised classification learning 

algorithms." Neural Computation 10: 1895-1923. doi:10.1162/089976698300017197. 

Duda, T. and M. Canty. 2002. "Unsupervised classification of satellite imagery: choosing a good 

algorithm." International Journal of Remote Sensing 23: 2193-2212. doi: 

10.1080/01430060110078467. 

Edwards, A. M., R. A. Phillips, N. W. Watkins, M.P. Freeman, E.J. Murphy, V. Afanasyev, et al. 2007. 

"Revisiting Levy flight search patterns of wandering albatrosses, bumblebees and deer." Nature 449: 

Page 14 of 32

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

15 

 

1044-1045. doi:10.1038/nature06199. 

Feng, Y. J., Y. Liu, X. H. Tong, M. L. Liu and S. S. Deng. 2011. "Modeling dynamic urban growth 

using cellular automata and particle swarm optimization rules." Landscape and Urban Planning 102: 

188-196. doi:10.1016/j.landurbplan.2011.04.004. 

Foody, G. M. 2002. "Status of land cover classification accuracy assessment." Remote Sensing of 

Environment 80: 185-201. doi:Pii S0034-4257(01)00295-4. 

Gong, P., J. Wang, L. Yu, Y.C. Zhao, Y.Y. Zhao, L. Liang, Z.G. Niu, X. Huang, et al. 2013. "Finer 

resolution observation and monitoring of global land cover: first mapping results with Landsat TM 

and ETM+ data." International Journal of Remote Sensing 34: 2607-2654. doi:10.1080/ 

01431161.2012.748992. 

Hakli, H. and H. Uguz. 2014. "A novel particle swarm optimization algorithm with Levy flight." 

Applied Soft Computing 23: 333-345. doi:10.1016/j.asoc.2014.06.034. 

Huang, X. and L. P. Zhang. 2010. "Comparison of Vector Stacking, Multi-SVMs Fuzzy Output, and 

Multi-SVMs Voting Methods for Multiscale VHR Urban Mapping." Ieee Geoscience and Remote 

Sensing Letters 7: 261-265. doi:10.1109/Lgrs.2009.2032563. 

Jensi, R. and G. W. Jiji. 2016. "An enhanced particle swarm optimization with levy flight for global 

optimization." Applied Soft Computing 43: 248-261.doi:10.1016/j.asoc.2016.02.018. 

Jung, M., K. Henkel, M. Herold and G. Churkina. 2006. "Exploiting synergies of global land cover 

products for carbon cycle modeling." Remote Sensing of Environment 101: 534-553. 

doi:10.1016/j.rse.2006.01.020. 

Karaboga, D. and B. Akay. 2009. "A comparative study of Artificial Bee Colony algorithm." Applied 

Mathematics And Computation 214: 108-132.doi:10.1016/j.amc.2009.03.090. 

Kaveh, A. and A. Zolghadr. 2014. "Democratic PSO for truss layout and size optimization with 

frequency constraints." Computers & Structures 130: 10-21.doi:10.1016/j.compstruc.2013.09.002. 

Kennedy, J. and R. Eberhart. 1995. "Particle swarm optimization." 1995 Ieee International Conference 

on Neural Networks Proceedings, Vols 1-6: 1942-1948. doi: 10.1109/Icnn.1995.488968. 

Kusetogullari, H., A. Yavariabdi and T. Celik. 2015. "Unsupervised Change Detection in 

Multitemporal Multispectral Satellite Images Using Parallel Particle Swarm Optimization." Ieee 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8: 2151-2164. 

doi:10.1109/Jstars.2015.2427274. 

Li, H. P., S. Q. Zhang, X. H. Ding, C. Zhang and P. Dale. 2016a. "Performance Evaluation of Cluster 

Validity Indices (CVIs) on Multi/Hyperspectral Remote Sensing Datasets." Remote Sensing 8: 295. 

doi:10.3390/rs8040295. 

Li, H. P., S. Q. Zhang, X. H. Ding, C. Zhang and R. Cropp. 2016b. "A novel unsupervised bee colony 

optimization (UBCO) method for remote-sensing image classification: a case study in a 

heterogeneous marsh area." International Journal of Remote Sensing 37: 5726-5748. 

doi:10.1080/01431161.2016.1246771. 

Li, H. P., S. Q. Zhang, Y. Sun and J. Gao. 2011. "Land cover classification with multi-source data 

using evidential reasoning approach." Chinese Geographical Science 21: 312-321. doi: 

10.1007/s11769-011-0465-1. 

Liu, X. P., J. P. Ou, X. Li and B. Ai. 2013. "Combining system dynamics and hybrid particle swarm 

optimization for land use allocation." Ecological Modelling 257: 11-24. 

doi:10.1016/j.ecolmodel.2013.02.027.  

Liu, X. P., X. Li, X. J. Peng, H. B. Li and J. Q. He. 2008. "Swarm intelligence for classification of 

Page 15 of 32

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

16 

 

remote sensing data." Science in China Series D-Earth Sciences 51: 79-87. 

doi:10.1007/s11430-007-0133-6. 

Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang and J. W. Merchant. 2000. 

"Development of a global land cover characteristics database and IGBP DISCover from 1 km 

AVHRR data." International Journal of Remote Sensing 21: 1303-1330. doi: 

10.1080/014311600210191. 

Mantegna, R. N. 1994. "Fast, Accurate Algorithm for Numerical-Simulation of Levy Stable 

Stochastic-Processes." Physical Review E 49: 4677-4683. doi: 10.1103/PhysRevE.49.4677. 

Masoomi, Z., M. S. Mesgari and M. Hamrah. 2013. "Allocation of urban land uses by Multi-Objective 

Particle Swarm Optimization algorithm." International Journal of Geographical Information Science 

27: 542-566. doi:10.1080/13658816.2012.698016. 

Maulik, U. and S. Bandyopadhyay. 2000. "Genetic algorithm-based clustering technique." Pattern 

Recognition 33: 1455-1465. doi: 10.1016/S0031-3203(99)00137-5. 

Mukhopadhyay, S., P. Mandal, T. Pal and J. K. Mandal. 2015. "Image Clustering Based on Different 

Length Particle Swarm Optimization (DPSO)." Proceedings of the 3rd International Conference on 

Frontiers of Intelligent Computing: Theory and Applications (Ficta) 2014, Vol 1 327: 711-718. 

doi:10.1007/978-3-319-11933-5_80. 

Naeini, A. A., S. Homayouni and M. Saadatseresht. 2014. "Improving the Dynamic Clustering of 

Hyperspectral Data Based on the Integration of Swarm Optimization and Decision Analysis." Ieee 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7: 2161-2173. 

doi:10.1109/Jstars.2014.2307579. 

Nayak, S. K., K. R. Krishnanand, B. K. Panigrahi and P. K. Rout. 2009. "Application of Artificial Bee 

Colony to Economic Load Dispatch Problem with Ramp Rate Limits and Prohibited Operating 

Zones." 2009 World Congress on Nature & Biologically Inspired Computing (Nabic 2009): 

1236-1241. 

Niazmardi, S., A. A. Naeini, S. Homayouni, A. Safari and F. Samadzadegan. 2012. "Particle swarm 

optimization of kernel-based fuzzy c-means for hyperspectral data clustering." Journal of Applied 

Remote Sensing 6. doi:Artn06360110.1117/1.Jrs.6.063601. 

Omran, M., A. P. Engelbrecht and A. Salman. 2005. "Particle swarm optimization method for image 

clustering." International Journal of Pattern Recognition and Artificial Intelligence 19: 297-321. 

doi: 10.1142/S0218001405004083. 

Paoli, A., F. Melgani and E. Pasolli. 2009. "Clustering of Hyperspectral Images Based on 

Multiobjective Particle Swarm Optimization." Ieee Transactions on Geoscience and Remote Sensing 

47: 4175-4188. doi:10.1109/TGRS.2009.2023666. 

Samadzadegan, F. and A. A. Naeini. 2011. "Fuzzy clustering of hyperspectral data based on particle 

swarm optimization." 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution 

in Remote Sensing (WHISPERS), 1-4.   

Senthilnath J., S. Kulkarni, D.R. Raghuram, M. Sudhindra, S.N. Omkar, V. Das and V. Mani. 2016, “A 

Novel Harmony Search Based Approach for Clustering Problems”. International Journal of Swarm 

Intelligence, 2: 66 – 86. doi: 10.1504/IJSI.2016.077434. 

Senthilnath, J., V. Das, S. N. Omkar and V. Mani. 2013. "Clustering using Levy Flight Cuckoo 

Search." Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and 

Applications (Bic-Ta 2012), 202: 65-75. doi:10.1007/978-81-322-1041-2_6.  

Seo, J. H., C. H. Im, C. G. Heo, J. K. Kim, H. K. Jung and C. G. Lee. 2006. "Multimodal function 

Page 16 of 32

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

17 

 

optimization based on particle swarm optimization." Ieee Transactions on Magnetics 42: 1095-1098. 

doi:10.1109/TMAG.2006.871568.  

Srinivasan, D. and T.H. Seow. 2003. "Particle Swarm Inspired Evolutionary Algorithm (PS-EA) for 

Multiobjective Optimization Problem." Proceedings of the 2003 Congress on Evolutionary 

Computation, Canberra, Australia, 2292–2297. 

Su, H. J., Q. Du, G. S. Chen and P. J. Du. 2014. "Optimized Hyperspectral Band Selection Using 

Particle Swarm Optimization." Ieee Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing 7: 2659-2670. doi:10.1109/JSTARS.2014.2312539. 

Tadjudin, S. and D. A. Landgrebe. 2000. "Robust parameter estimation for mixture model." Ieee 

Transactions on Geoscience and Remote Sensing 38: 439-445. doi:10.1109/36.823939. 

Tseng, C. T. and C. J. Liao. 2008. "A discrete particle swarm optimization for lot-streaming flowshop 

scheduling problem." European Journal Of Operational Research 191: 360-373. 

doi:10.1016/j.ejor.2007.08.030. 

Verburg, P. H., K. Neumann and L. Nol. 2011. "Challenges in using land use and land cover data for 

global change studies." Global Change Biology 17: 974-989. 

doi:10.1111/j.1365-2486.2010.02307.x. 

Vesterstrom, J. and R. Thomsen. 2004. "A comparative study of differential evolution, particle swarm 

optimization, and evolutionary algorithms on numerical benchmark problems." Cec2004: 

Proceedings of the 2004 Congress on Evolutionary Computation, Vols 1 and 2: 1980-1987. doi: 

10.1109/Cec.2004.1331139. 

Wang, L., W. P. Sousa, P. Gong and G. S. Biging. 2004. "Comparison of IKONOS and QuickBird 

images for mapping mangrove species on the Caribbean coast of Panama." Remote Sensing of 

Environment 91: 432-440. doi:10.1016/j.rse.2004.04.005. 

Wang, Q. M., L. G. Wang and D. F. Liu. 2012. "Particle swarm optimization-based sub-pixel mapping 

for remote-sensing imagery." International Journal of Remote Sensing 33: 6480-6496. 

doi:10.1080/01431161.2012.690541. 

Wilkinson, G. G. 2005. "Results and implications of a study of fifteen years of satellite image 

classification experiments." Ieee Transactions on Geoscience and Remote Sensing 43: 433-440. 

doi:10.1109/TGRS.2004.837325. 

Wong, M. T., X. J. He and W. C. Yeh. 2011. "Image Clustering Using Particle Swarm Optimization." 

2011 Ieee Congress on Evolutionary Computation (Cec): 262-268. 

Xu, K., W. Yang, G. Liu and H. Sun. 2013. "Unsupervised Satellite Image Classification Using 

Markov Field Topic Model." Ieee Geoscience and Remote Sensing Letters 10: 130-134. 

doi:10.1109/LGRS.2012.2194770. 

Xu, Y. F. and S. L. Zhang. 2009. "Fuzzy Particle Swarm Clustering of Infrared Images." Icic 2009: 

Second International Conference on Information and Computing Science, Vol 2, Proceedings: 

122-124.doi:10.1109/Icic.2009.139. 

Yang, F. Q., T. E. L. Sun and C. H. Zhang. 2009. "An efficient hybrid data clustering method based on 

K-harmonic means and Particle Swarm Optimization." Expert Systems with Applications 36: 

9847-9852. doi:10.1016/j.eswa.2009.02.003. 

Yang, X. S. 2010. Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2nd edition.  

Yang, X. S. and S. Deb. 2013. "Multiobjective cuckoo search for design optimization." Computers & 

Operations Research 40: 1616-1624. doi:10.1016/j.cor.2011.09.026. 

Yen, J., J. C. Liao, B. J. Lee and D. Randolph. 1998. "A hybrid approach to modeling metabolic 

Page 17 of 32

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

18 

 

systems using a genetic algorithm and simplex method." Ieee Transactions on Systems Man and 

Cybernetics Part B-Cybernetics 28: 173-191. doi:10.1109/3477.662758. 

Yildirim, A. 2014. "Unsupervised classification of multispectral Landsat images with multidimensional 

particle swarm optimization." International Journal of Remote Sensing 35: 1217-1243. 

doi:10.1080/01431161.2013.877617. 

Yu, P., A. K. Qin and D. A. Clausi. 2012. "Unsupervised Polarimetric SAR Image Segmentation and 

Classification Using Region Growing With Edge Penalty." Ieee Transactions on Geoscience and 

Remote Sensing 50: 1302-1317. doi:10.1109/TGRS.2011.2164085. 

Yu, Y. F., G. Li and C. Xu. 2013. "An Improved Particle Swarm Optimization Algorithm." Frontiers of 

Manufacturing Science and Measuring Technology Iii, Pts 1-3 401: 1328-1335. 

doi:10.4028/www.scientific.net/AMM.401-403.1328. 

Zhong, Y. F., L. P. Zhang, B. Huang and P. X. Li. 2006. "An unsupervised artificial immune classifier 

for multi/hyperspectral remote sensing imagery." Ieee Transactions on Geoscience and Remote 

Sensing 44: 420-431. doi:10.1109/TGRS.2005.861548. 

 

List of figure captions: 

 

Figure 1. Illustration of the evolution process of a particle in a 2-D spatial space. 

Figure 2. Flowchart of ULPSO for remote sensing image classification. 

Figure 3. Classification maps of the TM image achieved by the four methods: (a) TM image 

(bands 5, 4, 3); (b) ground reference data; and (c-f) classification maps produced by k-means, 

UGA, UPSO, and ULPSO methods, respectively.  

Figure 4. Classification maps of the FLC image achieved by the four methods: (a) FLC image 

(bands 9, 6, 3); (b) ground reference data; and (c-f) classification maps produced by k-means, 

UGA, UPSO, and ULPSO methods, respectively.  

Figure 5. Classification maps of the QuickBird image achieved by the four methods: (a) 

QuickBird image (bands 4, 3, 2); (b) ground reference data; and (c-f) classification maps 

produced by k-means, UGA, UPSO, and ULPSO methods, respectively.  
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Figure 1. Illustration of the evolution process of a particle in a 2-D spatial space.  
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Figure 2. Flowchart of ULPSO for remote sensing image classification.  
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Figure 3. Classification maps of the TM image achieved by the four methods: (a) TM image (bands 5, 4, 3); 
(b) ground reference data; and (c-f) classification maps produced by k-means, UGA, UPSO, and ULPSO 

methods, respectively.  
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Figure 4. Classification maps of the FLC image achieved by the four methods: (a) FLC image (bands 9, 6, 3); 
(b) ground reference data; and (c-f) classification maps produced by k-means, UGA, UPSO, and ULPSO 

methods, respectively.  
 

133x131mm (150 x 150 DPI)  

 

 

Page 22 of 32

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Figure 5. Classification maps of the QuickBird image achieved by the four methods: (a) QuickBird image 
(bands 4, 3, 2); (b) ground reference data; and (c-f) classification maps produced by k-means, UGA, UPSO, 

and ULPSO methods, respectively.  
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Figure 6. Variations of the average value of clustering metric (number of repetition: 30 times) for the four 
classification methods over the three experiments.  
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Figure 7. Variations of the average value of clustering metric (number of repetition: 30 times) for the four 
PSO-based methods in the TM experiment.  

 
110x82mm (150 x 150 DPI)  

 

 

Page 25 of 32

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Figure 8. Box plots of overall accuracies for the four PSO-based methods in the TM experiment.  
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Table 1. Classification accuracies achieved by the four methods with TM image. 

 Producer’s accuracy (%) User’s accuracy (%) 

k-means UGA UPSO ULPSO k-means UGA UPSO ULPSO 

Marsh 19.58 48.75 76.42 68.75 34.93 61.08 57.30 82.31 

Meadow 85.14 76.01 77.20 84.19 84.24 75.02 90.75 92.40   

Farmland 68.70 81.25 33.61 81.67 43.28 57.32 50.00 67.03 

Salineland 79.83 65.85 94.41 94.15 96.52 98.35 83.82 88.81 

Water 100.00 100.00 100.00 100.00 99.63 99.63 99.63 99.51 

OA (%) 63.47 70.68 71.17 82.48 - - - - 
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Table 2. Classification accuracies achieved by the four methods with FLC image. 

 Producer’s accuracy (%) User’s accuracy (%) 

k-means UGA UPSO ULPSO k-means UGA UPSO ULPSO 

Soybeans 99.07 97.90 99.33 99.50 37.65 94.17 92.12 91.07 

Rye 95.54 98.78 98.08 97.99 90.89 79.02 90.78 94.28 

Red clover 92.50 94.16 95.82 95.68 100.00 99.95 100.00 100.00 

Wheat 13.35 75.04 90.43 94.35 69.32 95.15 98.34   98.93 

OA (%) 70.90 90.39 95.40 96.52 - - - - 
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Table 3. Classification accuracies achieved by the four methods with QuickBird image. 

 Producer’s accuracy (%) User’s accuracy (%) 

k-means UGA UPSO ULPSO k-means UGA UPSO ULPSO 

Paddy field  84.82 75.02 87.72 88.38 57.89 76.73 71.82 72.69   

Farmland 69.31 76.33 71.12 72.41 92.18 89.43 91.51 90.99 

Grass 49.23 48.18 52.64 53.61 38.08 43.77 39.43 40.50 

Forest 17.10 32.66 50.34 50.92 38.73 29.16 74.54 75.83 

Shadow 86.87 96.68 93.20 93.20 97.86 86.67 94.85 96.24 

OA (%) 62.83 65.67 70.67 71.50 - - - - 
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Table 4. Kappa z-test results for comparing the performance of the four classifications (bold numbers: 

significant difference at 95% confidence level). 

Experiment Method 
kappa coefficient (κ) Kappa z-test 

κ Variance (×10
-5
) UGA UPSO ULPSO 

Landsat TM k-means 0.5325 5.2996 8.7208 9.3909 24.8770 

UGA 0.6228   5.4220 - 0.6539 15.5487 

UPSO 0.6296 5.3916 - - 14.8815 

ULPSO 0.7759   4.2733 - - - 

FLC k-means 0.6228 0.5280 26.7757 37.7273 40.6954 

 UGA 0.8696 0.3216 - 9.7257 12.3960 

 UPSO 0.9377 0.1687 - - 2.7813 

 ULPSO 0.9529 0.1300 - - - 

QuickBird k-means 0.5183 6.2669 3.7927 9.2744 10.2076 

 UGA 0.5608 6.2897 - 5.4867 6.4162 

 UPSO 0.6225 6.3560 - - 0.9231 

 ULPSO 0.6329 6.3376 - - - 
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Table 5. Average overall accuracy (OA) and kappa coefficient (κ) (number of repetition: 30 times) 

achieved by the four classification methods, as well as the unpaired t-test results.  

Experiment Method OA (variance) κ (variance) 

t-test value (two-tailed p) 

UGA UPSO ULPSO 

Landsat TM k-means 0.634(0.000) 0.533(0.000) 6.656(0.000) 7.393(0.000) 16.574(0.000) 

 UGA 0.723(0.005) 0.645(0.009) - 0.915(0.364) 4.628(0.000) 

 UPSO 0.741(0.006) 0.668(0.010) - - 3.369(0.001) 

 ULPSO 0.800(0.003) 0.744(0.005) - - - 

FLC k-means 0.771(0.008) 0.695(0.012) 6.365(0.000) 5.516(0.000) 10.237(0.000) 

 UGA 0.911(0.007) 0.880 (0.013) - 0.198(0.843) 2.139(0.038) 

 UPSO 0.905 (0.011) 0.873(0.019) - - 2.067(0.045) 

 ULPSO 0.949(0.002) 0.930(0.004) - - - 

QuickBird k-means 0.6335(0.001) 0.539(0.004) 2.803(0.008) 3.273(0.002) 5.632(0.000) 

 UGA 0.671(0.006) 0.578(0.009) - 0.132(0.895) 1.322(0.191) 

 UPSO 0.673(0.005) 0.581(0.007) - - 1.266(0.211) 

 ULPSO 0.694(0.003) 0.607(0.005) - - - 

Note: bold numbers denote that difference between the compared two methods is significant at 95% 

confidence level. 
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Table 6. Computing time of the four classification methods over the three experiments. 

Experiment 

Computation time (minutes) 

k-means UGA UPSO ULPSO 

Landsat TM 
1.95 30.97 31.00 31.67 

FLC 
0.58 4.76 4.71 4.81 

QuickBird 
1.89 29.44 29.33 30.40 
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