Measurements of top-quark pair to Z-boson cross-section ratios at √s=13, 8, 7 TeV with the ATLAS detector

Barton, Adam Edward and Beattie, Michael and Bertram, Iain Alexander and Borissov, Guennadi and Bouhova-Thacker, Evelina Vassileva and Dearnaley, William and Fox, Harald and Grimm, Kathryn Ann Tschann and Henderson, Robert Charles William and Hughes, Gareth and Jones, Roger William Lewis and Kartvelishvili, Vakhtang and Long, Robin Eamonn and Love, Peter Allan and Muenstermann, Daniel Matthias Alfred and Parker, Adam Jackson and Skinner, Malcolm and Smizanska, Maria and Walder, James William and Wharton, Andy and Ferrando, James (2017) Measurements of top-quark pair to Z-boson cross-section ratios at √s=13, 8, 7 TeV with the ATLAS detector. Journal of High Energy Physics, 2017 (2): 117. ISSN 1029-8479

Full text not available from this repository.

Abstract

Ratios of top-quark pair to Z-boson cross sections measured from proton-proton collisions at the LHC centre-of-mass energies of √s=13 TeV, 8 TeV, and 7 TeV are presented by the ATLAS Collaboration. Single ratios, at a given √s for the two processes and at different √s for each process, as well as double ratios of the two processes at different √s, are evaluated. The ratios are constructed using previously published ATLAS measurements of the tt¯ and Z-boson production cross sections, corrected to a common phase space where required, and a new analysis of Z → ℓ+ℓ− where ℓ = e, μ at √s=13 TeV performed with data collected in 2015 with an integrated luminosity of 3.2 fb−1. Correlations of systematic uncertainties are taken into account when evaluating the uncertainties in the ratios. The correlation model is also used to evaluate the combined cross section of the Z → e+e− and the Z → μ+μ− channels for each √s value. The results are compared to calculations performed at next-to-next-to-leading-order accuracy using recent sets of parton distribution functions. The data demonstrate significant power to constrain the gluon distribution function for the Bjorken-x values near 0.1 and the light-quark sea for x < 0.02.

Item Type:
Journal Article
Journal or Publication Title:
Journal of High Energy Physics
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100/3106
Subjects:
?? nuclear and high energy physics ??
ID Code:
86018
Deposited By:
Deposited On:
26 Apr 2017 09:48
Refereed?:
Yes
Published?:
Published
Last Modified:
14 Feb 2024 01:02