Menezes-Blackburn, Daniel and Jorquera, Milko A. and Gianfreda, Liliana and Greiner, Ralf and de la Luz Mora, Maria (2014) A novel phosphorus biofertilization strategy using cattle manure treated with phytase-nanoclay complexes. Biology and Fertility of Soils, 50 (4). pp. 583-592. ISSN 0178-2762
Full text not available from this repository.Abstract
The aim of this work was to evaluate the treatment of cattle manure with phytases stabilized in allophanic nanoclays as a potential novel phosphorus (P) biofertilization technology for crops grown in volcanic soils (Andisol). Furthermore, because the optimal pH for commercial phytase catalysis does not match the natural pH of manure, a complementary experiment was set up to evaluate the effect of manure inoculation with an alkaline phytase-producing bacterium. Finally, phytase-treated soil, manure, and soil-manure mixtures were evaluated for their P-supplying capacity to wheat plants grown under greenhouse conditions. Treating cattle manure with phytases stabilized in nanoclays resulted in a significant (P a parts per thousand currency signaEuro parts per thousand 0.05) increase of inorganic P in soil extracts (NaOH-EDTA and Olsen). The use of phytase-treated cattle manure increased dry weights by 10 % and the P concentration by 39 % in wheat plants grown under greenhouse conditions, which is equivalent to a P fertilizer rate of about 150 kg of P per hectare. The inoculation of cattle manure with beta-propeller phytase-producing bacteria led to an similar to 10 % increase in inorganic P in the manure extracts. However, applying inoculated manure to soil did not significantly increase wheat yield or P acquisition responses. Our results suggest that the novel approach of incubating cattle manure with phytases stabilized in nanoclay enhances the organic P cycling and P nutrition of plants grown in P-deficient soils.