Hankel operators that commute with second order differential operators.

Blower, Gordon (2008) Hankel operators that commute with second order differential operators. Journal of Mathematical Analysis and Applications, 342 (1). pp. 601-614. ISSN 0022-247X

[img]
Preview
PDF (integrablepaper3.pdf)
integrablepaper3.pdf

Download (159kB)

Abstract

Suppose that $\Gamma$ is a continuous and self-adjoint Hankel operator on $L^2(0, \infty )$ with kernel $\phi (x+y)$ and that $Lf=-(d/dx)(a(x)df/dx)+b(x)f(x) with $a(0)=0$. If $a$ and $b$ are both quadratic, hyperbolic or trigonometric functions, and $\phi$ satisfies a suitable form of Gauss's hypergeometric differential equation, or the confluent hypergeometric equation, then $\Gamma L=L\Gamma$. There are also results proving rapid decay of the singular numbers of Hankel integral operators with kernels that are analytic and of exponential decay in the right half-plane.

Item Type: Journal Article
Journal or Publication Title: Journal of Mathematical Analysis and Applications
Additional Information: MSC20000 47B35 The final, definitive version of this article has been published in the Journal, Journal of Mathematical Analysis and Applications 342 (1), 2008, © ELSEVIER.
Uncontrolled Keywords: /dk/atira/pure/researchoutput/libraryofcongress/qa
Subjects:
Departments: Faculty of Science and Technology > Mathematics and Statistics
ID Code: 843
Deposited By: Professor Gordon Blower
Deposited On: 13 Dec 2007 13:16
Refereed?: Yes
Published?: Published
Last Modified: 24 Aug 2019 00:46
URI: https://eprints.lancs.ac.uk/id/eprint/843

Actions (login required)

View Item View Item