Analysis of vibrational resonance in bi-harmonically driven plasma

Roy-Layinde, T. O. and Laoye, J. A. and Popoola, O. O. and Vincent, Uchechukwu Enyim (2016) Analysis of vibrational resonance in bi-harmonically driven plasma. Chaos, 26 (9). ISSN 1054-1500

PDF (Vibrational2016_revised)
Vibrational2016_revised.pdf - Accepted Version

Download (5MB)


The phenomenon of vibrational resonance (VR) is examined and analyzed in a bi-harmonically driven two-fluid plasma model with nonlinear dissipation. An equation for the slow oscillations of the system is analytically derived in terms of the parameters of the fast signal using the method of direct separation of motion. The presence of a high frequency externally applied electric field is found to significantly modify the system's dynamics, and consequently, induce VR. The origin of the VR in the plasma model has been identified, not only from the effective plasma potential but also from the contributions of the effective nonlinear dissipation. Beside several dynamical changes, including multiple symmetry-breaking bifurcations, attractor escapes, and reversed period-doubling bifurcations, numerical simulations also revealed the occurrence of single and double resonances induced by symmetry breaking bifurcations.

Item Type:
Journal Article
Journal or Publication Title:
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
29 Nov 2016 16:26
Last Modified:
17 Sep 2023 01:59