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The phenomenon of vibrational resonance (VR) is examined and analyzed in a bi-harmonically driven two-fluid
plasma model with nonlinear dissipation. An equation for the slow oscillations of the system is analytically
derived in terms of the parameters of the fast signal using the method of direct separation of motion. The
presence of a high frequency externally applied electric field is found to significantly modify the system’s
dynamics, and consequently, induce VR. The origin of the VR in the plasma model has been identified, not
only from the effective plasma potential but also from the contributions of the effective nonlinear dissipation.
Beside several dynamical changes, including multiple symmetry-breaking (sb) bifurcations, attractor escapes,
and reversed period-doubling bifurcations, numerical simulations also revealed the occurrence of single and
double resonances induced by symmetry breaking bifurcations.
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Vibrational resonance (VR) was first reported in
2000 by Landa and McClintock [J Phys A: Math
& Gen 33, L433 (2000)] in a non-linear bi-stable
system driven by two external periodic forces
with sharp variation in their frequencies. Since
then, VR has been investigated in various model
systems. In this paper, VR is examined and ana-
lyzed in a two-fluid plasma model driven by two
periodic forces. The model presents an interest-
ing scenario in which the effective nonlinear dissi-
pation contributes significantly to the occurrence
of VR, a situation that is not found in most fa-
miliar models, in particular systems with linear
dissipation, such as the Duffing oscillator. Be-
sides the analytical derivation of the equation for
the slow oscillations of the system in terms of the
parameters of the fast signal using the method of
direct separation of motion, numerical evidence
for VR is provided and its underlying dynamical
mechanism examined. Furthermore, some poten-
tial industrial applications of VR in plasma sys-
tem are discussed.

I. INTRODUCTION

Resonance, a physical concept originally developed in
the context of forced oscillators is a fascinating and fun-
damental deterministic or stochastic phenomena exhib-
ited by nonlinear dynamical systems and characterized
by the enhancement of the maximum system’s response1.

a)corresponding author: u.vincent@lancaster.ac.uk

The analysis of resonance is of broad interdisciplinary in-
terest in terms of practical applications in physics, biol-
ogy and engineering; and its occurrence can be induced
by different types of external force leading to diverse
form, such as stochastic resonance, vibrational resonance,
coherence resonance, ghost resonance, parametric reso-
nance, autoresonance and chaotic resonance1.

In particular, vibrational resonance2 is a phenomenon
observed in non-linear systems that are driven by two
external periodic forces with sharp variation in their fre-
quencies. In such system, one of the input signals is a
fast oscillation with its frequency much greater than that
of the slow vibration. In VR, the noise in the stochas-
tic resonance3–7 case or chaotic system for the chaotic
resonance8,9 is replaced by a high-frequency input sig-
nal leading to an enhancement in the system’s response
to variations in the parameters of the fast signal. Such
amplification, termed Vibrational Resonance (VR) takes
place when the response amplitude becomes minimum at
the bifurcation of the effective potential.

Landa and McClintock2 first reported the occurrence
of VR in the weakly damped and overdamped bistable
system numerically. Thereafter, an analytical investiga-
tion to confirm VR was carried out by Gitterman10. A
comprehensive analytical procedure on VR of bistable
Duffing oscillator which established its effective stiff-
ness was carried out by Blekhman and Landa11 and
generalized in a book by Blekhman12. Since then, vi-
brational resonance has attracted a lot of attentions
in bistable systems2,11,13, multistable systems14–16, ex-
citable systems17, ratchets18, quintic oscillators19, over-
damped systems2,15,18, coupled oscillators15,20, delayed
systems 15,20–22, assymetric Duffing oscillators23, frac-
tional order damped oscillators24, feedback networks25,
neuron models 17,26–28, synthetic gene network29 and
biological nonlinear maps 30. Moreover, experimen-
tal evidences of vibrational resonance has also been
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reported, notably in bistable and multistable vertical-
cavity surface-emitting laser (VCSEL) 13,16,31.

In general, nonlinear systems that are driven by low
frequency signal modulated by a high frequency input
signal are ubiquitous in nature and cut across different
fields like neuroscience, laser physics, ionospheric physics,
acoustics and atomic physics . In plasma physics, for in-
stance, it is well understood that when neutral atoms are
heated up to temperatures near or exceeding atomic ion-
ization energies, they decompose into negatively charged
electrons and positively charged ions, that are strongly
influenced by each others’ electromagnetic fields. More-
over, because the charges are freely moving, plasmas
possess well-defined space potential and the charge as-
semblage are capable of undergoing collective motions
of great vigor and extreme complexity. The dynam-
ics could be modeled by a driven anharmonic oscillator;
and therefore capable of exhibiting enhanced resonance
oscillations in the presence of high-frequency (HF ) sig-
nals. Indeed, such an assemblage known as plasma has
been well investigated due to its numerous applications
in technologies32.

Different techniques are needed to model the plasma
sources, the chemical and surface interactions, and the
microscopic processes in the etching of patterns. The
plasma is usually modelled with hybrid codes which treat
them as a fluid except where particle kinetics is nec-
essary, such as in reactive collisions32,33. In this direc-
tion, several models have been proposed. Here, we will
focus on the strongly nonlinear dissipative magnetized
plasma model34,35 which describe plasma as consisting
of electrons and ions constructed from a set of quasi-
hydrodynamic equation and investigate the occurrence of
VR when HF signal is imposed on the system. Despite
the recent burst of research activities36–38 and the impor-
tance of plasma in communication and human activities
in general, the possibility of observing VR in dissipative
plasma models driven by two periodic forces with its pos-
sible implications are yet to be explored. In this paper,
we theoretically and numerically examine and analyze
VR in a plasma model. We identified its origin, not only
from the effective plasma potential but also from the con-
tributions of the effective nonlinear dissipation. The rest
of the paper is organized as follows: In section II, the
model is presented. A detailed analytical description of
the resonance behaviour is given in section III. Numeri-
cal simulation is presented in section IV; while the paper
is concluded in section V.

II. THE MODEL

A convenient model system for this study is the two
fluid model that treats plasma as two inter-penetrating
conducting fluids of positive ion (i) with charge +e and
electron (e) with charge −e. In general, the Eulerian
equations which is analogous to the equations of hydro-
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FIG. 1. The asymmetric double well potential of the dimen-
sionless bi-harmonically driven plasma oscillations for δ = 0.5
and δ = 1.5 with parameters: κ = 3.05 and ωo = 1 fixed.

dynamics fluid flow is written as35,37,3936:

nαMα

dvα
dτ

= nαqα(E + vα ×B − µJ) − ∆Pα,

∂nα

∂τ
+ ∆ · (nαvα) = S, (1)

d

dτ
(Pαn

−γ
α ) = 0,

where S denotes the effect of ionization or large ampli-
tude vibrations. The indexing for each of the species (i
and e) is denoted by α. nα is the density with respect to
the species; vα and Pα represent their velocity and pres-
sure, respectively, γ is the specific heat ratio, and µα =
Mανα/nαe

2 is the resistive collision with να being the
collision frequency. Mα denotes the mass of each specie
α. Model (1) has attracted lots of research interests as it
represents high density plasma interactions with high fre-
quency electromagnetic waves. It finds applications in re-
active ion etchers, helicon thrusters, transformer coupled
plasmas, inductively coupled plasmas, electron cyclotron
resonance (ERC) plasma sources and plasmas resulting
from strong explosions in the atmosphere32. Thus, sys-
tem (1) is very appropriate for the analysis of vibrational
resonance because high frequency driving force modu-
lates slow signals transporting the ions. It is noteworthy
that photo-detachment process can physically represent
a slow external driving mechanism which controls the
charge on the particle while externally applied electric
field with a large periodic potential may be ideal for the
high frequency drive which can only be induced by trans-
former action in a toroidal system35.

Enjieu et al.35,37,39 had shown explicitly that the
plasma oscillation may be modeled by a periodically
driven nonlinear anharmonic oscillator as follows:
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d2n1

dτ2
+ (vi + 2λ+ 3µn2

1)
dn1

dτ

+ ω2n1 + vi(λn
2
1 + µn3

1) = F cos Ωτ (2)

Re-scaling the variables in Eq. (2) as t = ω0τ , n1 =
(

vi+2λ
3ε

)

x = Ξx, ǫ = vi+2λ
ω0

, κ = viλΞ
ω2 , δ = viµΞ

2

ω2

0

, f =
F

Ξω2

0

and Ω = ω
ω0

, the dimensionless form of Eq. (2) now

becomes

ẍ+ ε
(

1 + x2
)

ẋ+
dV (x)

dx
= f cos Ω t; (3)

with V (x) shown in Fig. 1 being the asymmetric plasma
potential given as36,38

V (x) =
ω2
0

2
x2 +

κ

3
x3 +

δ

4
x4. (4)

The dots represent the differentiation with respect to
time (t), µ, ω0, Ω and F are the damping coefficients,
fundamental frequency, forcing frequency and amplitude
of the external force respectively, κ and δ are quadratic
and cubic nonlinearity parameters, respectively.

III. ANALYTICAL DESCRIPTION OF RESONANCES

Here, we use the method of direct separation of mo-
tions described by Blekhman12 as the most effective for-
mulation of vibrational mechanics to obtain the equa-
tion of the slow motion which can be modulated by pa-
rameters of the fast driving signal analytically. The bi-
harmonically driven anharmonic plasma oscillations form
of the Eqn.(3) can be expressed as

ẍ+ ε(1 + x2)ẋ+
dV (x)

dx
= f cosωt+ g cos Ωτ (5)

where f cosωt is the low frequency input signal while
g cos Ωτ represents the high frequency input signal. For
a long time Ω ≫ ω and τ = εt, we seek solution of
Eqn.(5) such that

x(t) = χ(t) + ψ(t, τ). (6)

If ψ is a periodic function with period 2π
Ω and its mean

value w.r.t fast time τ is given by

〈ψ〉 = ψ̄ =
1

2π

∫ 2π

0

ψ dτ = 0; (7)

then, the aim is to obtain two systems of integral-
differential equations from Eqn.(5) such that if a pair
(χ, ψ) is a solution to the two integro-differential equa-
tions, then x = χ + ψ factoring in Eqn.(7) completely
solves Eqn.(5). Thus, substituting Eqn.(7) into Eqn.(5),
we have

χ̈+ ε(1 + χ2 + 2χψ + ψ2)χ̇+ (2εψψ̇ + ω2
0 + κψ + 3δψ2)χ

+(ǫψ̇ + κ+ 3δψ)χ2 + δχ3 + ψ̈ + ε(1 + ψ2)ψ̇ + ω2
0ψ + κψ2

+δψ3 = f cosωt+ g cos Ωτ. (8)
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FIG. 2. The effective potential corresponding to slow mo-
tion of the system for four values of fast amplitude; g =
100, 1000, 1500 and 2000 for parameter values: δ = 1.5,
κ = 3.05 and ωo = 1, Ω = 20 and ω = 1

Using Eqn.(7) and averaging Eqn.(8) w.r.t. fast time τ ,
we have

χ̈+ ε(1 + χ2 + χψ̄ + ψ̄2)χ̇+ (2εψ̄ ¯̇ψ + ω2
0 + 2κψ̄ + 3δψ̄2)χ

+(ǫ
¯̇
ψ + κ+ 3δψ̄)χ2 + δχ3 +

¯̈
ψ + ε(1 + ψ̄2)

¯̇
ψ + ω2

0ψ̄ + κψ̄2

+δψ̄3 = f cosωt+ ¯g cos Ωτ , (9)

which yield

χ̈+ ε(1 + χ2 + ψ̄2)χ̇+ (ω2
0 + 3δψ̄2)χ+ κχ2 + δχ3 + κψ̄2

+δψ̄3 = f cosωt. (10)

Subtracting Eqn.(10) from Eqn. (8), we have

ψ̈ + ε(1 + (ψ + χ)2)ψ̇ + ω2
0ψ + κ(ψ2 − ψ̄2) + δ(ψ3 − ψ̄3)

+εχ̇(ψ2 − ψ̄2) + 3εχ̇χ(ψ − ψ̄) + 2κχ(ψ − χ̄)

+3δχ(ψ2 − ψ̄2) = g cos Ωτ. (11)

Eqns.(10) and (11) are the required integro-differential
equations of motion representing the slow motion χ and
the fast motion ψ, respectively. Our interest lie in
Eqn.(10) which is the equation of motion of the slow
dynamics of system that can be modulated appropri-
ately by changing the parameters of the fast signal to
verify the existence of VR. In this regards, we assume
that the ψ component is much more faster than the
slow component χ, such that the components χ and χ̇
are considered frozen i.e. constant in Eqn.(11). Thus,
Eqn.(11) can be approximated using inertial approxima-

tion ψ̈ ≫ ψ̇ ≫ ψ... to

ψ̈ = g cos Ωt (12)

which has a solution

ψ =
−g
Ω2

cos Ωt, (13)
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so that ψ̄2 = g2

2Ω4 , ψ̄3 = 0. Using Eqn.(13) in Eqn.(10),
we can write

χ̈+ε(1+χ2+
g2

2Ω4
)χ̇+(ω2

0+
3δg2

2Ω4
)χ+κχ2+δχ3+κ

g2

2Ω4
= f cosωt

(14)
Re-scaling Eqn.(14), we can write

χ̈+ε(C1 +χ2)χ̇+C2χ+κχ2 + δχ3 +C3 = f cosωt (15)

where

C1 = 1 +
g2

2Ω4
, C2 = ω2

0 +
3δg2

2Ω4
, C3 = κ

g2

2Ω4

The effective potential corresponding to the slow motion
of the system described by Eqn.(10) is

Veff =
C2

2
χ2 +

κ

3
χ3 +

δ

4
χ4 + C3χ. (16)

Fig. 2 shows the plot of the effective potential Veff
against the component of the slow motion, χ for g =
100, 1000, 1500 and 2000 with parameters δ = 1.5, κ =
3.05, ωo=1 and Ω = 20. When g = 100, the effective
potential is a double well with appreciable resemblance to
the system’s potential shown in Fig. 1. As the value of g
is increased, the shape of the potential changes and at g =
2000, the Veff becomes a single well with no resemblance
to the system’s potential presented in Fig. 1. Here, we
can see that the effective potential of the slow motion
depend on the parameters of the fast motion Ω and g.
Moreover, if the high frequency signal dies out, by setting
the value of the fast amplitude g to zero in Eqn.(14),
Eqn.(15) is reduced to the model of the harmonically
driven plasma presented by Enjieu Kadji et al.35

Interestingly, from Eqn.(14) there is also a contribu-
tion to the effective dissipation of the system due to the
parameters of the fast signal oscillations. The effective

non-linear dissipation of the system is thus ε(1+χ2+ g2

2Ω4 ).
This change in the effective dissipation of the system is
not found in systems with linear dissipation such as the
asymmetric Duffing oscillator which has been well stud-
ied for VR in both the underdamped and overdamped
cases23. The effective dissipation can play a direct role
just like the effective potential in the enhancement of
signals by modulating the parameters of the fast sig-
nal. These parameters therefore dictate the equilibrium
points of the slow motion; which can be computed from
the equation

C3 + C2χ+ κχ2 + δχ3 = 0. (17)

The number of equilibrium states for the effective po-
tential has increased to four equilibrium points X∗ for
the potential Veff (x) from the three stationary points of
V (x) when δ > 0, κ > 0. We can describe the oscilla-
tions in terms of deviations from the equilibrium points.
For such deviation of slow motion of χ from χ∗, using a
change of variable Y = χ− χ∗ in Eqn.(15) we obtain

Ÿ + α1Ẏ + ε(Y + χ∗)2Ẏ + α2Y + α3Y
2

+δY 3 + α4 = f cosωt (18)
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FIG. 3. Dependence of Q on g for Ω = 10, Ω = 20 and Ω =
30. Analytical (solid lines) calculated from Eqn. (18) and
numerical (broken lines) from Eqn. (5). Parameters are: δ =
0.3, κ = 1.0, ε = 0.04, ω0 = 1, f = 0.3, ω = 1.

where α1 = εC1, α2 = C2 +2κχ∗+3δχ∗2, α3 = κ+3δχ∗,
α4 = C2χ

∗ + κχ∗2 + δχ∗3. For f ≪ 1, one can assume
that | Y |≪ 1. Thus, by neglecting the nonlinear term in
Eq. (18), we obtain a linear system written as

Ÿ + (α1 + εχ∗2)Ẏ + α2Y = f cosωt− α4. (19)

Eq.(19) has a solution Y (t) = AL cos(ωt+φ) in the limit
t→ ∞; and the response amplitude AL is given as

AL =
f

√

(ω2
r − ω2)2 − γ2ω2

, (20)

where ωr =
√
α2 is the resonant frequency of the linear

system (19) and γ = α1 + εχ∗2. The amplitude of the
system’s response is thus Q = AL

f
.

In systems with linear dissipation, γ appearing in Eqn.
(20) is the linear damping coefficient. However, in our

system, the parameter γ = εC1 = ε
(

1 + g2

2Ω4

)

is de-

pendent on both the frequency, Ω and amplitude, g of
the fast signal. Thus, a variation in the parameters of
the fast signal (g or Ω) produces additive and multiplica-
tive effects on the appearance of VR - which is the hall-
mark of this paper. Now, setting W = ω2

r − ω2 and
S = (ω2

r −ω2)2 + γ2ω2, we find that Q achieves its maxi-
mum value when S is minimum, i.e., when W = 0. Reso-
nance would therefore occur if ωr = ω, where ω =

√
α2 =

C2 + 2κX∗ + 3δX∗. If the oscillation takes place around
the equilibrium X∗ = 0, then, ω =

√
C2.

Additionally, it is easy to deduce from γ two extreme
cases that our system could also satisfy.
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FIG. 4. Bifurcation diagram as a function of ε showing (a)
a resonance orbit (R), symmetry breaking (sb) and reversed
period-doubling bifurcations for g = 0 and (b) the deforma-
tion of bifurcation structure in (a) when g = 500. Inset is
the narrow chaotic band near ε = 0 in (a). Parameters are:
δ = 0.3, κ = 1, ω0 = 1, ω = 0.1, f = 0.5,Ω = 3.

(i) Case 1: g and ε fixed, with Ω varying. In this case,
when Ω → ∞ , γ = ε, the system reduces to a
Duffing-type oscillator with linear dissipation; and
when Ω → 0, ε = 0, it becomes a conservative
system.

(ii) Case 2: Ω and ε fixed, with g varying. In this case,
when g → ∞, ε = 0, and it becomes a conservative
system. However, when g → 0, γ = ε. Then, we
have an oscillator with linear dissipation.

IV. NUMERICAL RESULTS

In order to numerically integrate the plasma system
(5), it is convenient to express it as a set of two coupled
autonomous ODEs in the form

dx

dt
= y, (21)

dy

dt
= −ε(1 + x2)y − ω2

ox− κx2 − δx3 + f cosωt+ g cos Ωτ.

These equations were integrated using the Fourth-Order
Runge-Kutta (FORK) scheme with fixed step sizes ∆t =
0.001. The following parameters were fixed throughout
the paper δ = 0.3, κ = 1, ω0 = 1, ω = 0.1. The initial
conditions are x(0) = 1, y(0) = 1 and the total time is t
= 4000 with the first 100 iterates dropped as transients.

We examined VR by investigating the linear response
Q of the dissipative plasma at the lower frequency input

signal. Q was computed from the expression

Q =

√

B2
S +B2

C

f
(22)

and the corresponding phase shift φ defined as

φ = −tan−1

(

BS

BC

)

, (23)

where T = 2π
Ω , n(= 1, 2, 3...) is any positive integer.

BS =
2

nT

∫ nT

0

x(t) sinωt dt,

BC =
2

nT

∫ nT

0

x(t) cosωt dt. (24)

In order to examine the amplitude response of the sys-
tem, Eqns. (22) and (23) were computed from the nu-
merically integrated Eqn. (24) using the earlier obtained
solutions of the bi-harmonically driven plasma of Eqn.
(3). To validate the analysis in Sec. III, theoretical Q
was obtained by numerically integrating Eqn. (18) and
the results compared with Q obtained directly from Eqn.
(22). Fig. 3 shows the plot of Q for three values of Ω
(10, 20 and 30) computed from Eqn. (18) and super-
imposed with their corresponding numerical curves com-
puted from Eqn. (5) for comparison. One can obviously
see that the theoretical and numerical results are in close
agreement, with all curves having nearly equal peaks.
However, the position of the peaks are shifted further
away from the origin as the value of Ω increases.

Next, we investigate the effect of the nonlinear dissi-
pation on VR. We begin by examining the changes in
the system’s dynamics as the coefficient of the nonlinear
dissipation ε is varied for g = 0 and g = 500; while other
parameters are fixed as follows: δ = 0.3, κ = 1, ω0 =
1, ω = 0.1, f = 0.5, and Ω = 3. Fig. 4 shows a bifurca-
tion diagram as a function of ε which was not reported
in previous studies in plasma dynamics35,38. Here, a dis-
tinct sequence of bifurcation, including reversed period-
doubling bifurcations take place (Fig. 4(a)) when g = 0
- corresponding to a system with one external forcing.
For weak values of ε (typically, ε < 0.003), a narrow
chaotic zone exists where the system occupies with inter-
connected chaotic orbit (See the inset in Fig. 4(a)). As
the dissipation coefficient is further increased, the chaotic
orbit bifurcates and dissolves into a resonating periodic
orbit (R) which undergoes a symmetric-breaking bifurca-
tion at ε ≈ 0.068 in which three coexisting periodic orbits
are born. Further increase in ε to ε ≈ 0.08 drives the sys-
tem to another short-lived chaotic state which on further
increase of ε experiences a reversed period-doubling to a
periodic orbit. For g = 500 (the biharmonically driven
case) shown in Fig. 4(b), the narrow chaotic band at
0 ≤ ε ≤ 0.003 in Fig. 4(a) disappears; while the distinct
and smooth bifurcation structure immediately after the
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FIG. 5. Dependence of Q on g for different values of the non-
linear dissipation coefficient, ε (Upper panel) and correspond-
ing bifurcation diagram as a function of g for ε = 0.02 (Lower
panel) illustrating the occurrence of symmetry-breaking bifur-
cations. Inset is for weak values of dissipations. Parameters
are: δ = 0.3, κ = 1, ω0 = 1, ω = 0.1, f = 0.5, and Ω = 3.

occurrence of chaos at ε ≈ 0.08 experiences some defor-
mation with a corresponding widening of the bifurcation
branches. Interestingly, whereas the resonating periodic
attractor in the interval 0 ≤ ε < 0.06 survives the de-
formation and control effects of the fast signal, g cos Ωt,
its oscillation is however enhanced through the process
of vibrational resonance as we shall show.

In what follows, we focus on the parameter regime,
0 ≤ ε < 0.06 corresponding to the ε range where
the resonating attractor was observed in Fig. 4(a) to
illustrate the effect of gradual variation in the coeffi-
cient of dissipation ε on VR. Fig. 5(Upper panel) shows
that Q exhibits one or two distinct peaks, namely,
single and double resonances, respectively for 0.02 ≤
ε ≤ 0.05. In fact, for ε = 0.02, five resonant peaks
denoted as Qi(gi, Qmax), (i = 1, .., 5) are observable:
Q1(40, 0.11), Q2(155, 1.39), Q3(355, 1.32), Q4(450, 0.11)
and Q5(535, 0.16). Notice that Q2(155, 1.39) and
Q3(355, 1.32) are distinct with their amplitudes al-
most equal and Q3 occurring at g3 = 3g1. The
two adjacent peaks to Q2(155, 1.39) and Q3(355, 1.32),
that is, Q1(40, 0.11) and Q4(450, 0.11) are of equal
and suppressed amplitude, relative to Q2(155, 1.39) and
Q3(355, 1.32). We shall look closely at the dynamical
mechanism associated with this amplitude suppression
later. In this regime, a steady decrease in ε results in
rapid increase in the response amplitude Q. At very
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FIG. 6. Attractors in (x, y = ẋ) phase space showing
the Poincaré plots of the various dynamical changes tak-
ing place during the multiple -(sb-sb)- bifurcations g =
0, 10, 150, 210, 360 and 500 for figures a,b c, d, e and f re-
spectively. Parameters are: δ = 0.3, κ = 1, ω0 = 1, ω = 0.1,
f = 0.5, Ω = 3 and ε = 0.02.

small values of dissipation coefficient corresponding to
the narrow chaotic band in Fig. 4(a), Q typically becomes
turbulent and enhancement or depression of resonance
becomes challenging with the emergence of sharp spikes
that are apparently connected to chaotic dynamics. This
is shown in the inset of Fig. 5(Upper panel). Further-
more, when ε = 0 Eqn. (5) reduces to the conservative
plasma model with high frequency excitation39,

ẍ+ ω2
0x+ βx2 + αx3 = f cosωt+ g cos tΩt. (25)

In this case, VR does not occur for the parameter values
used here as can be seen in the inset of Fig. 5, rather Q
shows several spikes, indicating that the system is in a
chaotic state. The emphasis here is that beside the role
of the system’s effective potential (16), the effective non-
linear dissipation, γ of the system plays a critical contrib-
utory role in the occurrence of VR in this plasma model.
Remarkably, the enhancement of signal by means of VR
in plasma is particularly significant with a given set of
carefully chosen low-dissipation.

It has been well established that resonance curves are
closely connected to the underlying global bifurcation set
of nonlinear oscillators1,40,41. In addition, Koz lowski et
al.41 had reported that symmetric-breaking (sb) bifur-
cations occur between resonances. Therefore, to uncover
the dynamical mechanism associated with the occurrence
of double-resonance and amplitude suppression, we plot-
ted in Fig. 5(Lower panel) the bifurcation diagram for
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FIG. 7. System’s response, Q to fast amplitude g and the cor-
responding phase shift φ for parameters δ = 0.3, κ = 1.0, ω0 =
1.0, ε = 0.04. (a) and (b) f = 0.5 and ω = 0.05, 0.1, 0.25, and
0.5. (c) and (d) ω = 0.1 and f = 0.05, 0.5, 5.0 and 15.0

ε = 0.02 where pronounced double resonance appeared.
Notice here that when the driving amplitude, g of the fast

signal is increased, multiple symmetry breaking (sb) bi-
furcation takes place alongside the appearance of several
resonances.

Hereafter, we adopt the notation −(sb− sb)− which im-
plies that two parameter values exist where symmetry-
breaking bifurcations occur, the first being where a sym-
metrical periodic attractor splits into coexisting attrac-
tors, and the second corresponding to the point at which
the coexisting attractors merge to form symmetrical pe-
riodic attractor41,42. In Fig. 5(Lower panel), four sb bi-
furcations can be observed. The first sb occur simul-
taneously near g = 25, given birth to two 2T periodic
attractors at the lower and upper branches of the bi-
furcation diagram for g < 185 as shown in Fig. 5. At
g ≈ 185, the two branches simultaneously undergo sb bi-
furcations, denoted by sbu1

and sbL, respectively; each
splitting into two attractors. Whereas the upper branch
splits into ATu1

and ATu2
that recombines at g ≈ 250

(sbu2
), the lower branch attractor experience an escape

dynamics43,44 during the sbL bifurcations scenario and
varnishes for some range of g values. Fig. 5(Lower panel)
shows that attractor escape occurs at two regimes in the
lower sb bifurcation branch, first at g ≈ 15, correspond-
ing to the first suppressed resonance peak, Q1(40, 0.11);
and secondly at g ≈ 185, corresponding to the second
suppressed resonance peak, Q4(450, 0.11). Depending on
the stability of the attractors born at g ≈ 25, the system

could follow either the lower or upper symmetry bifurca-
tion branch40. Thus, comparing the Upper panel (Q vs g)
and the Lower panel (x vs g) plots in Fig. 5, it is evident
that sbu1

and sbu2
points as well as the attractors ATu1

and ATu2
are sandwiched by the two well pronounced res-

onance peaks, Q2(155, 1.39), Q3(355, 1.32) in the Upper
panel. The system’s dynamics is apparently dominated
by the upper symmetry-breaking bifurcation branch for
increasing g, implying that −(sb− sb)− bifurcations ac-
count for the occurrence of double-resonance peaks. At
the lower symmetry bifurcation branch, attractor escape
appears to be responsible for the suppression of the ad-
jacent peaks Q1(40, 0.11) and Q4(450, 0.11).

To complete this picture, and starting with a transient
chaotic attractor at g = 0, Fig. 6 shows the Poincaré
plots of the various dynamical changes in phase space
accompanying the multiple sb bifurcations for the pa-
rameters set: δ = 0.3, κ = 1, ω0 = 1, ω = 0.1, f = 0.5,
Ω = 3 and ε = 0.02; and for different values of g. When
g = 0 as shown in Fig. 6(a), the dynamics represent that
of the anharmonically driven plasma oscillation as pre-
sented by Enjieu Kadji et al.35. With increase in the
value of g, from g = 0 to 500, the system’s dynamics be-
comes largely dominated by the fast oscillation; so that
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oscillations due to the fast input signal now modulate the
weak signal. Consequently, a change is induced in the
system’s response as illustrated Fig. 6 - the consequence
being a modification to the system’s potential such that
its effective potential now determines the resonant state.

Finally, the dependencies of both the response ampli-
tude Q and phase shift φ on the amplitude of the input
signal at fixed dissipation coefficient ε were also exam-
ined. The results are presented in Fig. 7 for different
values of low frequencies ω (0.05, 0.1, 0.25 and 0.5) and
forcing amplitudes f (0.05, 0.5, 5, 15) with fixed parame-
ters δ = 0.3, κ = 1.0, ω0 = 1, ε = 0.02. Again, we observe
the occurrence of both single vibrational resonance (Fig.
7(b)) and bi-resonances (Fig. 7(a)) with respect to g.
Besides the dependence of the resonance peaks on the
value of g, there is slight shift in the values of g at which
resonance occur for different values of ω.

V. CONCLUSIONS

In summary, we have examined and analyzed vibra-
tional resonance in a plasma oscillator under the influence
of two periodic driving forces. We analytically derived
the equation for the slow motion in terms of the parame-
ters of the fast signal and examined the contributions of
the nonlinear dissipation to the system’s dynamics. The
equation of the slow motion reveals that the contribu-
tion from the fast signal to the dissipation of the system
is such that the effective nonlinear dissipation of the sys-
tem play a similar role as the effective potential. We car-
ried out numerical simulations to investigate the effects of
nonlinear dissipation on the system’s dynamics and ver-
ify the existence of VR. Beside the dynamical changes,
which includes multiple symmetry-breaking bifurcations,
attractor escapes, and reversed period-doubling bifurca-
tions that were not reported previously, we found that
high frequency external forcing is indeed capable of in-
ducing both single and double resonances. This carries
some direct industrial applications in signal or output fil-
tering control as well as enhancement which include de-
tecting, extracting, or separating signals, reducing noise,
or accentuating certain features of the plasma signal.
Moreover, Plasma plays major roles in the production of
integrated circuits consisting of repeated steps of deposi-
tion, masking, etching, and stripping to form and connect
circuit elements like transistors and capacitors32. In this
application, VR can be employed in the production of
dense plasma which can increase the etch or deposition
rate from different sources. An ideal plasma source pos-
sesses straight ion orbits with controllable energy. For
profile control, ions are accelerated in a sheath, whose
voltage drop is set by the DC potential applied to the
etched surface. The DC potential is created by applying
an Radio-frequency (RF) voltage to the substrate and
using the unidirectional electron flow to charge the sub-
strate negatively. In parallel-plate discharges, this RF
bias cannot be controlled independently, since increas-

ing the applied RF voltage increases the density and
other parameters also, resulting in too large ion energy.
In inductive and Electron Cyclotron Resonance (ECR)
sources, the plasma is ionized independently of the sub-
strate’s RF bias with slow transport process, and ion
energies of the desired value can be applied as the fast
input signal. In this manner, enhancement, control or
filtering of desired responses in plasma production can
thus be achieved. Finally, a detailed investigation of the
parameter regime for which VR may occur in system (25)
would be an interesting direction for future work.
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