Jones, L. and Stevens, Carly Joanne and Rowe, E. C. and Payne, R. and Caporn, Simon J. M. and Evans, Chris D. and Field, Chris D. and Dale, Sarah (2017) Can on-site management mitigate nitrogen deposition impacts in non-wooded habitats? Biological Conservation, 212 (Part B). pp. 464-475. ISSN 0006-3207
Jones_et_al._2016_Nitrogen_deposition_and_management_Postprint.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.
Download (775kB)
Abstract
Nitrogen (N) deposition is a major cause of plant biodiversity loss, with serious implications for appropriate management of protected sites. Reducing N emissions is the only long-term solution. However, on-site management has the potential to mitigate some of the adverse effects of N deposition. In this paper we review how management activities such as grazing, cutting, burning, hydrological management and soil disturbance measures can mitigate the negative impacts of N across a range of temperate habitats (acid, calcareous and neutral grasslands, sand dunes and other coastal habitats, heathlands, bogs and fens). The review focuses mainly on European habitats, which have a long history of N deposition, and it excludes forested systems. For each management type we distinguish between actions that improve habitat suitability for plant species of conservation importance, and actions that immobilize N or remove it from the system. For grasslands and heathlands we collate data on the quantity of N removal by each management type. Our findings show that while most activities improve habitat suitability, the majority do little to slow or to reduce the amount of N accumulating in soil pools at current deposition rates. Only heavy cutting/mowing with removal in grasslands, high intensity burns in heathlands and sod cutting remove more N than comes in from deposition under typical management cycles. We conclude by discussing some of the unintended consequences of managing specifically for N impacts, which can include damage to non-target species, alteration of soil processes, loss of the seedbank and loss of soil carbon.