Andonovski, Goran and Angelov, Plamen Parvanov and Blazic, Saso and Skrjanc, Igor (2016) A practical implementation of Robust Evolving Cloud-based Controller with normalized data space for heat-exchanger plant. Applied Soft Computing, 48. pp. 29-38. ISSN 1568-4946
PHE_RECCo_Goran.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.
Download (2MB)
Abstract
The RECCo control algorithm, presented in this article, is based on the fuzzy rule-based (FRB) system named ANYA which has non-parametric antecedent part. It starts with zero fuzzy rules (clouds) in the rule base and evolves its structure while performing the control of the plant. For the consequent part of RECCo PID-type controller is used and the parameters are adapted in an online manner. The RECCo does not require any off-line training or any type of model of the controlled process (e.g. differential equations). Moreover, in this article we propose a normalization of the cloud (data) space and an improved adaptation law of the controller. Due to the normalization some of the evolving parameters can be fixed while the new adaptation law improves the performance of the controller in the starting phase of the process control. To assess the performance of the RECCo algorithm, firstly a comparison study with classical PID controller was performed on a model of a plate heat-exchanger (PHE). Tuning the PID parameters was done using three different techniques (Ziegler–Nichols, Cohen–Coon and pole placement). Furthermore, a practical implementation of the RECCo controller for a real PHE plant is presented. The PHE system has nonlinear static characteristic and a time delay. Additionally, the real sensor's and actuator's limitations represent a serious problem from the control point of view. Besides this, the RECCo control algorithm autonomously learns and evolves the structure and adapts its parameters in an online unsupervised manner.