
A Practical Implementation of Robust Evolving
Cloud-based Controller with Normalized Data

Space for Heat-Exchanger Plant
Goran Andonovski

Faculty of Electrical Engineering
University of Ljubljana, Slovenia

goran.andonovski@fe.uni-lj.si

Plamen Angelov
School of Coputing and Communications

Lancaster University, United Kingdom
p.angelov@lancaster.ac.uk
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Abstract—The RECCo control algorithm, presented in this
article, is based on the fuzzy rule-based (FRB) system named
ANYA which has non-parametric antecedent part. It starts with
zero fuzzy rules (clouds) in the rule base and evolves its structure
while performing the control of the plant. For the consequent part
of RECCo PID-type controller is used and the parameters are
adapted in an online manner. The RECCo does not require any
off-line training or any type of model of the controlled process
(e.g. differential equations). Moreover, in this article we propose
a normalization of the cloud (data) space and an improved
adaptation law of the controller. Due to the normalization
some of the evolving parameters can be fixed while the new
adaptation law improves the performance of the controller in the
starting phase of the process control. To assess the performance
of the RECCo algorithm, firstly an comparison study with
classical PID controller was performed on a model of a plate
heat-exchanger (PHE). Tunning the PID parameters was done
using three different techniques (Ziegler-Nichols, Cohen-Coon
and pole placement). Furthermore, a practical implementation
of the RECCo controller for a real PHE plant is presented.
The PHE system has nonlinear static characteristic and a time
delay. Additionally, the real sensor’s and actuator’s limitations
represent a serious problem from the control point of view.
Besides this, the RECCo control algorithm autonomously learns
and evolves the structure and adapts its parameters in an online
unsupervised manner.

I. INTRODUCTION

Nowadays, control of nonlinear and complex processes is
still an active research topic. Besides changing circumstances,
process dynamics and complexity of the processes the indus-
trial markets require high and satisfactory performance of the
controller. A local linear approximation of the process com-
bined with the classical PID controller provides good results
but only in the neighborhood of the linearized operating point
while this approach is not suitable for the whole operating
range of the nonlinear process.

To solve the problem of nonlinearity the authors in [1]
presented a self-tuning method for a class of nonlinear PID
control systems based on Lyapunov approach. Another scheme
in [2] is presented where the just-in-time learning technique
is employed to predict the process dynamics and furthermore,
the Lyapunov method for adapting the PID parameters is
used. There are many other techniques and methods, for

example, in [3] an online adaptation of PID controller using
neural networks is proposed and in [4] the genetic algorithm
for finding the optimal PID parameters is applied. Also the
particle swarm optimization for tunning the parameters of
PID controller in [5] is used. Another type of PID controllers
are Fractional Order PID (FO PID) controllers that perform
better than a classical PID-s [6] but require setting of two
additional parameters. Similar to classical ones, tunning of this
parameters can be solved by solving an optimization problem
[7], [8], [9].

Fuzzy systems represent control scheme which is developed
to deal with the nonlinear processes and due to their powerful
adaptability and nonlinear modeling capability they are widely
used in many applications [10], [11], [12], [13], [14], [15],
[16], [17]. The author of fuzzy sets/systems is Prof. Lotfi A.
Zadeh who firstly introduced the theory in [18]. After Prof.
Zadeh has introduced the theory of fuzzy sets, Mamdani in
[19] published the first fuzzy model based control applica-
tion on dynamic plant (a model of steam engine). Another
fuzzy control system is Takagi-Sugeno (TS) fuzzy approach
proposed in [20] that has attracted lots of attention after
the publication. The wide popularity and usage of the fuzzy
control systems is presented in [21] where a lot of fuzzy
control schemes are discussed. Similar to TS fuzzy models
a new Tensor product (TP) models were developed. One of
the advantages of the TP models is that the linear matrix
inequality (LMI)-based control design can be applied directly
to TP models. Recently, several process control solution using
TP models were proposed for different applications [22], [23],
[24], [25].

Mamdani and TS fuzzy systems are made up of IF-THEN
fuzzy rules representing the local linear input/output relations
of a nonlinear system. The first part (IF) of the conditional
is termed the antecedent, and the second part (THEN) is
the consequent. Although, both TS and Mamdani are fuzzy
systems, they have some differences, especially in the way how
the conditional part is defined. Both fuzzy systems – TS and
Mamdani – have a fuzzy antecedent part, while they differ in
the consequent part which has the form of a functional (often
linear) in the case of TS systems and a form of fuzzy logic in



TABLE I
A COMPARISON OF DIFFERENT TYPES OF FRB [26]
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(IF)
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(THEN)

DEFUZZI-
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[19]
Fuzzy sets

(scalar, parame-
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Fuzzy sets

(scalar, parame-
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Center of

Gravity

TS

[20]

Functional

(often linear)

Fuzzily

weighted sum

ANYA

[26]

Data clouds

(non-parametric)

Any

of the above

two types

the case of Mamdani systems (see Table I).
Besides the classical fuzzy rule-based (FRB) systems, TS

and Mamdani, Angelov and Yager proposed a new simplified
type of FRB system named ANYA in [26]. Moreover, they
presented a new concept how the antecedent part is defined.
As we have already mentioned above in both classical FRB
systems the antecedent part is fuzzy and uses predefined
and fixed membership functions of triangular, trapezoidal,
Gaussian type etc. ANYA FRB system extracts the information
from the real data and form the data clouds to define the
membership function. The clouds are sets of data that have
common properties (they are close to each other in the data
space). All data have different degree of memberships to the
existing clouds determined by the local density of the data
sample to all data from the particular cloud.

In [26] the authors distinguished between the clouds and
the clusters and they pointed out the main differences between
them. In general, the clouds do not require a priori information
about the total number of membership functions or even an
assumption about its form (do not have boundaries). More-
over, data clouds represent all previous data samples that are
associated with the cloud.

Inspired and motivated by the simplicity of the ANYA
FRB system several approaches on process control were
developed and tested on different simulation models [27],
[28] and on a real plant [29]. Firstly, in [27] a new fuzzy
controller RECCo (Robust Evolving Cloud-based Controller)
was introduced. The main advantage of the RECCo controller
is that it does not require any information and knowledge about
the controlled process (e.g. in a form of differential equations).
Furthermore, it is initialized from the first data sample and
learns autonomously while performing the control of the plant.
Also the structure of the RECCo is not predefined but evolves
in an online manner during the process control (adding new
clouds – fuzzy rules). In [27] and [29] a new cloud is added
according to the global density of the data while in [28] and
[30] a simpler way using local density threshold is proposed.
Finally, controller’s parameters in the consequent part are also
tuned and adapted autonomously using stable gradient-based
learning method.

In this paper we propose an improvement of the RECCo
controller presented in [28]. Our idea is by using the basic
knowledge from the controlled process (input and output
range, time constant and sampling time) to set/fix the initial
parameters required by the algorithm. A new normalized data
space is proposed and due to this the evolving parameter
γmax can be fixed (γmax defines ’when’ a new cloud is
added and will be introduced later in more detail). Also
the adaptation gain vector ααα could be calculated using the
range of the control variable and the default value. Thus
the controller tuning is simplified which makes the approach
more appealing for the use in practical applications. Different
initial real life scenarios were analyzed and new improved
adaptation law with absolute values in the starting phase is
proposed to improve the performance of the controller [31].
This improvement speed up convergence and reduce large
transients when the initial are far away from the unknown
parameters.

In order to show the effectiveness of the proposed controller,
we provide several experiments on a real plate heat-exchanger
(PHE) plant and on a PHE model. Firstly, we compared
the performance of the proposed algorithm RECCo with the
classical PID controller on PHE model. The parameters of
the PID were tunned using Ziegler-Nichols [32], Cohen-Coon
[33] and by pole placement method [34]. Nowadays, the
PHE is widely used in many different industries and it is
suitable to apply for heating, cooling systems, heat-ventilation-
air-condition (HVAC) system, in chemistry, pharmacy, food
and beverages industry etc. The basic concept of the PHE is
transferring the heat between two liquids (separate circuits)
flowing on either side of thin metal plates. The dynamical
characteristic of the PHE contains strong nonlinear behavior
in gain and time constant and has time delay.

The remainder of this paper is organized as follows. In
Section II the RECCo algorithm is presented, including the
evolving structure and the adaptation law of the controller.
The normalized data (cloud) space is explained in Section
III and moreover, several experiments are provided to prove
the benefit of the proposed approach. In Section IV the
performance comparison between RECCo and PID controller
is presented. Moreover, the PHE process is explained and the
experiment is provided to show the performance and the ability
of learning of the RECCo controller in practice. At the end in
Section V the conclusions are given.

II. ROBUST EVOLVING CLOUD-BASED CONTROLLER
(RECCO)

A. The structure of the RECCo controller

In this section the RECCo controller will be described. The
control algorithm consists of three different parts: reference
model, evolving law, and adaptation law. All this parts are
schematically presented in Fig. 1. Theoretically, the controller
could be initialized from the first data sample received. But of
course, any existing information about the controlled process
can be used to suitably initialize the design parameters. After
the initialization, for every incoming sample the controller



gains are adapted and, if the certain conditions are satisfied, a
new data cloud (fuzzy rule) is added.
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Fig. 1. Control scheme of the RECCo algorithm.

The robust evolving cloud-based controller (RECCo) is a
type of ANYA fuzzy rule-based system with non-parametric
antecedents (IF part). As we mentioned above, this method
applies the concept of fuzzy data clouds and normalized
relative data density to define the membership of the current
data1 to the existing clouds. The clouds represent sets of
previous data samples which are close to each other. Incoming
data samples are analyzed in an online manner and each
sample is associated with one of the clouds and only the
parameters of that cloud are updated.

As we already said, the RECCo controller is based on the
ANYA FRB system proposed in [26] and has the following
form:

Ri : IF (x ∼ Xi) THEN (ui) (1)

where the number of rules Ri is equal to the number of
the clouds in the data space i = 1, . . . , c, and moreover,
it changes during the control process. The non-parametric
antecedent part is defined with the operator ∼ which could be
linguistically expressed as ’is associated with’ and that means
that the current data x = [x1, x2, . . . , xn]

T is related to the ith

cloud Xi ∈ Rn. The consequent part is defined by c different
(partial) control actions ui for each rule. RECCo controller can
work with different forms of defuzzification such as weighted
average, center-of-gravity, ”winers takes all” and some mixed
forms (e.g. parameterized defuzzification).

The degree of association between the data sample x
and corresponding cloud Xi is measured by the normalized
relative density as follows:

λik =
γik
c∑
j=1

γjk

i = 1, . . . , c (2)

where γik is the local density of the ith cloud for the current
data x. The local density calculation in the following subsec-
tion will be explained in detail, together with the evolving law
of the RECCo controller.

B. The procedure of the RECCo control algorithm

1) Reference model: Choosing an appropriate reference
model is a very important part of the proposed adaptive

1Data will be used to express singular and plural form in this paper

system design. General suggestions for selecting the reference
model dynamics are that the time constants have to be similar
(usually slightly shorter) to those of uncontrolled process. The
reference model order would be at less or equal to the order
of the plant [35]. Furthermore, the initial conditions of the
reference model would then need to have the same values as
the initial plant (yr0 = y0).

The reference model part of the RECCo controller defines
the desired trajectory yrk and the dynamics that the plant output
yk should follow. In this case we define simple first order linear
reference-model as:

yrk+1 = ary
r
k + (1− ar)rk 0 < ar < 1 (3)

where the parameter ar is the pole of that model. It can be
approximated by (1− Ts

τ ), where Ts is the sampling period of
the process and τ is the time constant of the reference model
which is slightly shorter than the estimated time constant of
the controlled plant. In (3) the rk is the reference signal and
the yrk represents the desired trajectory of the plant output yk.
The goal of the controller, is to provide efficient performance
and to ensure that the tracking error:

εk = yrk − yk (4)

is as small as possible (in the presence of disturbances and
modeling errors).

When dealing with adaptive and evolving (online learning)
systems we need to construct reference with changing steps
in some operating range [rmin, ramx]. In this case the user
(operator) of the process only chooses the limit values rmin
and rmax and the RECCo algorithm constructs the step
changes in this interval.

We have to note here that the RECCo controller is not
limited only to this type of reference model (first order linear
model), but also other types could be used according to the
dynamics of the controlled process.

2) Evolving law: The evolving law in this paper consists
only a mechanism for adding new clouds (rules). Beside this,
another evolving mechanisms such as merging, splitting and
removing clouds can be also implemented. We decide to use
just adding mechanism due to simplicity of the implementation
and because it is sufficient for control the plant proposed in
Section IV. The adding mechanism relies on the local density
γik of the current data sample with the existing clouds. The
local density takes into consideration all the data samples from
one particular cloud (therefore local) and is calculated using
a suitable kernel K:

γik = K

Mi∑
j=1

dikj

 (5)

where M i is the number of data samples in ith cloud and
dikj is the distance between the current data sample xk and
the jth sample xij from the ith cloud. In all the equations
the superscript in variables (e.g. i in xik) refers to the clouds,
while the subscript refers to the time stamp (e.g. k in xik). As



we can see in (5) this approach directly takes into account all
previous data samples.

In this article we used a Cauchy kernel as was proposed
in [26] and the local density of the i-th cloud is defined as
follows:

γik =
1

1 +
∑Mi

j=1(dikj)2

Mi

(6)

where
∑Mi

j=1(dikj)
2 is the sum of the square of Euclidean

distances (dikj = ‖xk − xij‖2) between the new data xk and
all data points of the i-th cloud. We have to mention that,
another type of distance measure could also be used (e.g.
Mahalanobis in [30]) and it was shown that both Euclidean and
Mahalanobis distance produced satisfying results. For easier
practical and computational implementation, local density (6)
can be recursively rewritten as follows:

γik =
1

1 + ‖xk − µik‖2 + σik − ‖µik‖2
(7)

where µik is the mean value of the cloud’s data points and
σik is the mean-square length of the data vectors in the
ith cloud. Both of them can be recursively calculated using
following equations for mean value and mean-square length,
respectively:

µik =
M i − 1

M i
µik−1 +

1

M i
xk (8)

σik =
M i − 1

M i
σik−1 +

1

M i
‖xk‖2 (9)

Initial condition (M i = 1) for the mean value is µi1 = x1 and
for the mean-square length is σi1 = ‖x1‖2.

The evolving law in this paper consists the mechanism of
adding new clouds and is the same as the one presented in [28].
Moreover, it is much simpler in comparison to the mechanism
used in [27], [29]. Once a new data sample arrive we need
to calculate c different local densities between the sample
and all the existing clouds (see Fig. 2). According to the
maximal local density (maxi γ

i
k) the data sample is associated

with that cloud and furthermore, the parameters of that cloud
are updated using equations (8) and (9). Theoretically, it is
possible to happen that the current data sample has the same
density to two or more clouds. In that case we associate that
data sample with the oldest cloud (the one that was added
before the others). But, if the maximal local density (maxi γ

i
k)

is lower than the threshold value γmax (the current data sample
is far away from all existing clouds), a new cloud is added.
The cloud’s data space is normalized (it will be explained
in the next section) and due to this the default value of the
threshold can be fixed γmax = 0.93. Some conservatism is
always welcome when changing the structure of the evolving
system. This is why some other criteria need to be fulfilled
before adding a new cloud (such as certain time nadd has
passed from the last change). We have to note here that in
our previous and current experiments we always use default
value of this parameter nadd = 20. Moreover, because of the
normalized data space and fixed value of the parameter γmax

the adding of new clouds is more stable and the parameter
nadd can be even neglected. We can summarize the whole
evolving procedure presented above in the pseudo Algorithm
1 (see lines from 9 to 22).

xk

γ1
k

γ2
k

γck

Fig. 2. Associating the current data sample xk with one of the existing clouds
according to the local densities γik , where i = 1, . . . , c

3) Adaptation law: For the consequent part of the RECCo
controller the PID-type control is used [28] and each cloud
(fuzzy rule) has its own PID parameters. The vector of the pa-
rameters is denoted as θik =

[
P ik, I

i
k, D

i
k, R

i
k

]T
and parameters

of the first cloud are initialized with zeros θ1
0 = [0, 0, 0, 0]

T ,
while all later added clouds are initialized with mean value of
the parameters of all previous clouds as follows:

θc0 =
1

c− 1

c−1∑
j=1

θjk (10)

where c is the index of the newly added cloud.

After the classification of the current data sample to one of
the clouds, only the PID parameters of that cloud are adapted
while the parameters of other clouds are kept constant:

θik = θik−1 + ∆θik (11)

and the adaptation of the PID parameters was introduced in
[28], but in this article we proposed an improved version as



Algorithm 1 Pseudo code of the RECCo PID control algo-
rithm

1: Initialize (Process parameters): τ , Ts, umin, umax, rmin,
rmax.

2: Initialize (Evolving parameters): γmax, c = 0, cmax, nadd.
3: Initialize (Adaptation parameters): αP , αI , αD, αR, σL,
ddead, θ, θ.

4: repeat
5: Measurement: yk.
6: Define and compute: yrk . Reference model
7: Compute: ek, εk, Σεk, ∆ε

k.
8: Compute: xk = [ εk/∆ε, (yrk − rmin)/∆r ]

T .
9: if c = 0 then . Start of the evolving law

10: Increment: c,
11: Store: kadd,
12: Initialize: µ1

0, σ1
0 , θ1

0 .
13: else
14: Calculate: γik, λik, where i = 1, . . . , c
15: if (maxiγik < γmax and k > (kadd + nadd)) then
16: Increment: c,
17: Store: kadd,
18: Initialize: µc0, σc0, θc0.
19: else
20: Associate sample xk with cloud (maxiγik)
21: Update µik, σik for the cloud (maxiγik)
22: end if
23: end if . End of the evolving law
24: Adaptation of the PID controller gains.
25: Computation of the control law.
26: until End of data stream.

follows:

∆P ik = αP Gsignλ
i
k

|ekεk|
1 + r2

k

∆Iik = αI Gsignλ
i
k

|ek∆ε
k|

1 + r2
k

∆Di
k = αD Gsignλ

i
k

|ek∆ε
k|

1 + r2
k

∆Rik = αRGsignλ
i
k

εk
1 + r2

k

(12)

where αP , αI , αD, αR are the adaptation gains of the con-
troller parameters, Gsign = ±1 is the known process gain
sign, λik is the normalized local density of the cloud, εk
is the tracking error while the control error is denoted as
ek = rk − yk. The discrete-time derivative is denoted as ∆ε

k

and will be discussed later. In (12) only the adaptation gains
should be set initially. The default value of the parameters
is 0.1 and is used when the range of the control variable is
(umin = 0/4, umax = 20). When the range is different, the
value of the parameters is scaled as follows:

αnew =
umax − umin

20
· 0.1

For example if the range is from umin = 0 to umax = 100
the new value of the adaptive gains will be αnew = 0.5.
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Fig. 3. The reference, the model reference and the controlled signal for heat-
exchanger pilot plant in the starting phase with (upper plot) and without (lower
plot) calculating the absolute value in adaptation law of the controller gains
(y0 = 32 ◦C, r0 = 25 ◦C).

The absolute values in (12) are used only in the starting
phase of the control performance (five time constants is
enough) and after that they are omitted from the adapta-
tion law. The problem appears when the initial value of
the controlled variable is higher than the reference value
(y0 > r0) which causes negative control error (ek < 0)
and correspondingly negative adaptation of the parameters
(∆P ik,∆I

i
k,∆D

i
k < 0). As we already mentioned, the pa-

rameters of the first data cloud are initialized with zeros and
without the absolute values in (12) the negative adaptation will
lead to even bigger error. Fig. 3 shows the difference in the
control performance with and without using absolute values
in the starting phase. On the other hand, this adaptation law
does not alter the performance of the controller in the case
of the positive initial error, moreover, does not depend on the
sign Gsign of the process gain.

In the section I we noted that the proposed approach can
work with both TS and Mamdani (Table I) rule consequent
part. For a PID-type controller, the rule consequent has the
following form:

uik = P ikεk + IikΣ
ε
k +Di

k∆ε
k +Rik, i = 1, . . . , c (13)

where P ik, I
i
k, D

i
k are controller gains while Rik is compen-

sation of the operating point. While the adaptation of the
parameter Rik in (12) is driven only by tracking error εk
this parameter tries to correct the offset error of the current
operating point. Σε

k and ∆ε
k in (13) are discrete-time integral

and derivative of the tracking error, respectively, and can be
calculated as follows:

Σε
k =

k−1∑
κ=0

εκ = Σε
k−1 + εk−1 (14)

∆ε
k = εk − εk−1 (15)



Finally, for the defuzzification the weighted average is used
(but not limited to this form) and furthermore, the control
variable becomes:

uk = umin +

c∑
i=1

λiku
i = umin +

c∑
i=1

γiku
i

c∑
i=1

γik

(16)

where ui denotes the i-th (partial) rule consequent and
normalized relative density (2) is used. From the practical
implementation point of view we add umin in this equation (in
comparison with the one proposed in [27], [28]) and represents
the minimal input value of the real actuator which in our case
is umin = 4 mA.

C. The instability protection mechanism

This subsection is devoted to the modifications of the adap-
tation law (11) that improve the robustness of the closed-loop
system. Supervised adaptation of any controller can improve,
theoretically and practically, the performance and robustness
of the controller. In order to minimize the negative influence
of parasitics, disturbances in the system and to eliminate the
pure integral action of the adaptive law, we introduce several
mechanisms to improve the RECCo control algorithm.

When dealing with adaptive controllers and parameter
adaptation we need to be aware of the potential instability
problems caused by the parameter drift [36]. Due to this, to
make RECCo controller more robust, several techniques were
already applied in [27] and [28]. In this paper we will use the
following techniques:

1) Dead zone in the adaptation law: To improve the robust-
ness under the unknown bounded disturbances and modeling
errors, the RECCo controller includes a dead-zone in adapta-
tion law. The general idea behind the dead-zone mechanism,
in case of bounded disturbances, is to turn off the adaptation
algorithm when the absolute value of the tracking error is
smaller than a certain threshold [37]:

∆θ̄ik =

{
∆θik |εk| ≥ ddead
0 |εk| < ddead

i = 1, . . . , c (17)

The parameter ddead should be chosen slightly larger than
the process noise to improve the effectiveness of the adaptive
law. A larger threshold implies a shorter adaptation period and
larger tracking error, while smaller value can lead to parameter
drift.

2) Parameter projection: Parameter projection mechanism
is used to guarantee that the estimation of the parameters will
stay within finite known region [38]. In the case of the positive
plant gain all the parameters should be bounded by 0 from
bellow while upper bound may or may not be provided. The
adaptive law in (11) is generalized as follows:

θik =


θik−1 + ∆θik θ ≤ θik−1 + ∆θik ≤ θ
θ θik−1 + ∆θik < θ

θ θik−1 + ∆θik > θ

i = 1, . . . , c

(18)

In our case we chose θ = 0 and θ =∞ for the controller gains
Pk, Ik, and Dk, while for the compensation of the operating
point Rk the lower bound was θ = −∞. If we have some a
priori knowledge where the true parameters θ∗ are located in
Rn we can define upper and lower bound for the elements of θ.
The benefit of such information may speed up the convergence
of finding optimal parameters.

3) Leakage in the adaptation law: The use of leakage in
the adaptation law is a very known approach for improvement
of robustness of adaptive control. Already exist different types
of leakage, for example σ-modification [39], e1-modification
[40], switching σ-modification [41] etc.

Including the leakage in the adaptation law results in:

θik = (1− σL)θik−1 + ∆θik i = 1, . . . , c (19)

where σL defines the extent of the leakage.
4) Interruption of adaptation: In the RECCo algorithm we

first calculate the adaptation of the PID parameters (∆θik) and
then the control variable uk. In some cases this two steps
can be in conflict, which means that the adaptation causes
control signal which is outside the limits [umin, umax]. In such
case the adaptive law should be interrupted in the following
manner:

∆θ̄ik =

{
∆θik umin ≤ uk ≤ umax
0 otherwise

i = 1, . . . , c (20)

yrk−rmin

∆r

1

0 εk
∆ε

−0.5 0.5

xk

Fig. 4. Normalized cloud space.

III. CLOUD SPACE NORMALIZATION

Until now, we did not discuss the content and the definition
of the data sample xk. In the previous work [28] the data
sample was defined in 2D space as xk = [εk, y

r
k]
T , where

the first element (εk) represents the horizontal axis while the
second element (yrk) represents the vertical axis of the data
space. In this case, if we want to change the operating range
of the reference signal rk, this will also affect the reference
model output yrk, and consequently the data space will change
its size (shrink or expand) in both direction (yrk and εk).



Our idea is to define a constant data space (see Fig. 4),
where majority of the data will appear, regardless of the range
of the reference signal. Even if we want to control a different
process, the same data normalization can be used with the
same constant data space. As a consequence, the evolving
parameter γmax can be fixed. We propose a normalized data
space as follows:

x =
[

εk
∆ε ,

yrk−rmin

∆r

]T
(21)

where ∆r = rmax − rmin and ∆ε = ∆r
2 . In this case the

operator (user) needs to choose, according to the process re-
quirements, only the operating range of the plant [rmin, rmax].
After that, several step changes of the reference signal rk are
constructed to cover the whole range of the process (e.g. see
upper plot in Fig. 12).

IV. EXPERIMENTAL RESULTS OF A HEAT-EXCHANGER
PILOT PLANT

A. Comparison between RECCo and classical PID controllers

In this subsection, the performance of the RECCo con-
troller in comparison with the classical PID controller is
studied. Three methods for designing the parameters of the
PID controller were used: Ziegler-Nichols [32] (PIDZN ),
Cohen-Coon [33] (PIDCC) and pole placement method [34]
(PIDPP ). To verify the performance of the proposed control
algorithm a model of plate heat-exchanger (PHE) was used
[42]. The control procedure of the RECCo controller for PHE
model is described in [43]. The same procedure for acquiring
the parameters and the structure of the RECCo controller in
this paper was used.

From the open loop response of the PHE model (see Fig.
5), the characteristic parameters such as process gain KP ,
time constants τP and dead time Tdead,P were obtained. Due
to the non-linearity of the process model, each operating
point has different characteristic parameters (see Table II). An
exception is the dead time which is constant. For the gain and
the time constant of the process we calculate average value.
Therefore, the average process gain is KP = 2.49 while the
average time constant is τP = 35.25. This parameters were
used to determine the values of the PID controllers (PIDZN ,
PIDCC , and PIDPP ). The sampling time used is Ts = 2 s.
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Fig. 5. Simulation. Open-loop response of the plate heat-exchanger model.

TABLE II
SIMULATION. PROCESS CHARACTERISTICS OF THE PHE MODEL:
PROCESS GAIN KP , TIME CONSTANT τ , AND DEAD TIME tdead .

uk [mA] 6 8 10 12 14 16 18 20

KP 3.38 4.17 4.93 2.71 1.21 1.73 1.10 0.68
τP [s] 48 50 27 19 18 47 44 29
Tdead,P [s] 4 4 4 4 4 4 4 4

For the performance evaluation, several criteria functions
were compared, such as maximum overshoot, rising and
settling time. Furthermore, the control effort was evaluated
using integral criteria functions: Sum of the Absolute Input
differences (fSAdU ) and Sum of the Squared Input differences
(fSSdU ):

fSAdU =
∑
k

|∆uk| (22)

fSSdU =
∑
k

∆u2
k (23)

where ∆uk = uk − uk−1 is a change of the input action.
Besides evaluating the control effort, we also compared

integral (cumulative) of the process error (ek = rk−yk) using
the following criteria functions:

fSAE = Ts
∑
k

|ek| (24)

fSSE = Ts
∑
k

|e2
k| (25)

where Ts is the sampling time and in our case is equal to 2.
Finally, the comparison results are presented in the next

figures and tables. First, in Fig. 6 the controlled variables ob-
tained by each of the controllers (PIDZN , PIDCC , PIDPP

and RECCo) are presented.
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Fig. 6. Simulation. The comparison of the responses (controlled variables)
obtained by different controllers.

For better comparison, the same controlled variables form
Fig. 6 are also shown in Fig. 7 where the different operating
points are plotted in the same time frame. The rise time (the
time required by the response yk to rise from 10 % to 90 %
of its final value), maximal overshoot and settling time (ek



is smaller than 0.25 ◦C) were calculated and the results are
presented in Table III. Focusing on the rise time from the table,
in some cases the pole placement controller provide better
results, but the difference is in range of few time samples.
Comparing the maximal overshoot and the settling time the
RECCo controller provides better results.
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Fig. 7. Simulation. Each of the four plots shows the performance of a
controller in 8 different transients of the controlled variable (all the transients
are appropriately shifted).

TABLE III
SIMULATION. PERFORMANCE COMPARISON BETWEEN THE FOUR

CONTROLLERS FOR PLATE HEAT-EXCHANGER.

rk [
◦C] 10 20 30 40 50 40 30 20

Rise time [s]
PIDZN 44 36 34 36 122 42 26 42
PIDCC 46 40 38 42 112 42 28 44
PIDPP 46 14 12 12 110 38 14 16
RECCo 42 20 24 28 104 36 22 28

Overshoot [%]
PIDZN 5.8 11.7 4.5 5.0 4.2 20.1 5.9 5.1
PIDCC 3.5 6.6 1.6 2.9 2.2 14.8 2.5 3.0
PIDPP 5.1 19.6 12.7 8.6 2.3 16.0 8.6 7.1
RECCo 1.9 1.4 1.6 1.3 2.0 6.8 1.3 2.0

Settling time [s]
PIDZN 116 98 78 94 382 168 78 100
PIDCC 122 96 54 242 154 114 68 82
PIDPP 150 238 34 48 144 102 38 74
RECCo 60 30 42 42 138 80 42 48

Table IV summarizes the comparison between the four
controllers based on four criteria (22), (23), (24) and (25). We
can notice that for all criteria functions the RECCo controller
indicates better performance in controlling the PHE process.

B. Real system
In our experimental study a real plant of plate heat-

exchanger (PHE) is used. The main purpose of this device is

TABLE IV
SIMULATION. COMPARISON BETWEEN THE FOUR CONTROLLERS USING

DIFFERENT CRITERIA FUNCTIONS.

fSAdU [A] fSSdU
[
A2
]

fSAE [◦C] fSSE
[◦C2

]
PIDZN 2.93 18.52 1419 25430
PIDCC 2.87 18.64 1121 20277
PIDPP 1.77 9.28 327 6110
RECCo 1.59 6.48 309 5129

to efficiently transfer the heat from one medium to another. In
Fig. 8 the process scheme is shown. It consists of two separate
water circuits (the primary one is hot flow and the secondary
is cold water flow). The primary circuit has a constant inlet
temperature Tec(k) controlled by on-off thermostat which
characteristic will be discussed later. Motor driven valve V1

controls the primary circuit flow Fc(k) and represents the
control variable uk. The outlet water of the plate exchanger of
the primary circuit is returned to the reservoir. The secondary
circuit has inlet temperature Tep(k) and the constant water
flow of cold water Fp(k) on one side and the controlled
variable is outlet temperature Tsp(k) on the other side of the
circuit.

Fig. 8. Plate heat-exchanger pilot plant process.

The practical implementation of the whole system (RECCo
control algorithm, Data Acquisition System and PHE Plant) for
process control is shown in Fig. 9. We can notice that RECCo
algorithm requires only two connections to the real process,
uk and yk, without additional information of the process. The
control signal uk is in the range 4 mA – 20 mA and is not
additionally converted because both, the RECCo algorithm and
the PHE process work in the same range. On the other hand,
the temperature sensor provides the signal in the range 4 mA
– 20 mA and additionally, we need to convert this signal to the
actual temperature range of the sensor (from 0 ◦C to 100 ◦C)
for easier interpretation and understanding of the results.

The wide hysteresis of the thermostat (approximately
±2 ◦C) in the primary circuit represents the disturbance and
has different influence across the operating region. This could
be seen in Fig. 10 where a constant valve command is applied
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Fig. 9. Process control and data acquisition system.

in three operating points. The variances and the mean values of
the signals Tsp(k) for each operating point are then calculated.
The changing influence of the thermostat characteristics in
different operating points provides an additional complexity to
the process and makes the control problem more challenging.
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Fig. 10. The variation of the inlet temperature Tec due to the primary circuit
thermostat at constant valve opening in three different operating points (top
uk = 20mA, middle uk = 13.3mA and bottom uk = 4.6mA).

The open loop response of the plant is shown in Fig. 11.
The step changes of the input signal are chosen to cover the
whole range of the process (from 4 mA to 20 mA in steps
of 1 mA). It can easily be noticed the nonlinearity of the
process: changing time constant depending on the operating
point, and also the effect of the thermostat hysteresis to the
process. As already said, the effect of the thermostat is larger
in the higher operating points. All these characteristics of the
PHE process are dealt with RECCo controller and the results
of the proposed algorithm are shown in the following.

Advantage of the RECCo controller is that we need only
very basic information of the controlled process (estimated
value of the dominant time constant τ , the range of the
actuator [umin, umax], and the range of the controlled vari-
able [rmin, rmax]). Furthermore, the controller’s structure is
evolved and parameters are adapted during performing the
control of the process. The design parameters are divided into
three groups (process, evolving and adaptive parameters), the
same as in the initialization phase of Algorithm 1.
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Fig. 11. Open-loop response of the PHE output Tsp to the series of step
changes on the input valve V1 (uk changes from 4mA to 20mA in steps
of 1mA, bottom plot). Top plot shows the inlet water temperature Tec (red
line) and the outlet water temperature Tsp (blue line).

1) The first group contains very technical (process) param-
eters which are set according to the system requirements.
The process range in this experiment was chosen as
rmin = 25 ◦C and rmax = 50 ◦C. We mentioned
above that in the case of a different process range, no
additional tuning of adaptive and evolving parameters
is required. The time constant and the sampling time
of the reference model were chosen as τ = 40 s and
Ts = 2 s, respectively. The time constant τ is chosen in
the range of the time constant of the plant. The process
input or the actuator’s range was defined by the hardware
(umin = 4 mA, umax = 20 mA).

2) The evolving parameters from the second group define
the rules when and why a new cloud is added. Simula-
tions were started with zero fuzzy clouds (rules). A new
cloud is added when the maximal value of the local
densities γik, i = 1, . . . , c is lower than the threshold
value γmax = 0.93. The parameter that defines the
minimum number of samples between two new clouds
is defined as nadd = 20.

3) The third group contains parameters of the adapta-
tion/control law. The dead zone ddead was chosen as
1% of the process range ∆r (ddead = 0.25 ◦C) and the
leakage parameter is set to σL = 10−6. All adaptive
gains αP , αI , αD and αR are set to 0.1.

In this section the practical results are presented and the
improvements of the RECCo controller (adaptation of the
parameters and cloud space normalization) are tested. A closer
look to the starting phase of the experiment is shown in Fig.
12 where the reference rk, the model reference output yrk, the
controlled signal yr, and the control signal uk are given. At
this point we notice that in this experiment a new adaptation
method is used (mentioned in subsection II-B3). In Fig. 13



the phase after the transient of the adaption is shown. In Fig.
14 all added clouds during the process control are shown. In
this case six clouds (fuzzy rules) have been constructed. The
tracking error εk is shown in Fig. 15 where its decreasing with
time can be clearly noticed.
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Fig. 12. The reference, the model reference and the controlled signal (top
plot) and the control signal (bottom plot) for plate heat exchanger in the
starting phase.
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Fig. 13. The reference, the model reference and the controlled signal (top
plot) and the control signal (bottom plot) for plate heat exchanger in the
finishing phase.

V. CONCLUSION

In this paper a practical implementation of the RECCo
control approach on a real heat-exchanger was proposed.
Moreover, a new approach of RECCo with normalized data
space and improved adaptation of controller parameters was
used. The normalization of the data space results in making the
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Fig. 15. The tracking error εk for heat-exchanger pilot plant (y0 = 15 ◦C).

problem of determination of the evolving and the adaptation
parameters much easier. In fact, default choice of design
parameters provides very good control performance for a broad
specter of processes as shown in our numerous studies. In case
of the negative initial control error a new adaptation of the
controller is proposed for the starting phase of the evolving
process. Both modifications, normalization and adaptation, are
thoroughly tested and analyzed for real plate heat exchanger
plant. Irrespective of the process range, the same initial values
of the parameters are used in all the experiments which is one
of the most valuable benefits of the proposed modifications.
The effect of the input disturbances was also analyzed to test
the robustness of the controller. The main advantage of the
RECCo controller is the self-evolving procedure which starts
with a very limited a priori information about the control



process (only the range of the control and controlled variable
are needed and a rough estimate of the dominant time constant
of the controlled process). This approach effectively deals with
nonlinear processes.
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