Whitaker, Gavin A. and Golightly, Andrew and Boys, Richard J. and Sherlock, Christopher Gerrard (2017) Improved bridge constructs for stochastic differential equations. Statistics and Computing, 27 (4). pp. 885-900. ISSN 0960-3174
art_3A10.1007_2Fs11222_016_9660_3.pdf - Published Version
Available under License Creative Commons Attribution.
Download (1MB)
Abstract
We consider the task of generating discrete-time realisations of a nonlinear multivariate diffusion process satisfying an Itô stochastic differential equation conditional on an observation taken at a fixed future time-point. Such realisations are typically termed diffusion bridges. Since, in general, no closed form expression exists for the transition densities of the process of interest, a widely adopted solution works with the Euler–Maruyama approximation, by replacing the intractable transition densities with Gaussian approximations. However, the density of the conditioned discrete-time process remains intractable, necessitating the use of computationally intensive methods such as Markov chain Monte Carlo. Designing an efficient proposal mechanism which can be applied to a noisy and partially observed system that exhibits nonlinear dynamics is a challenging problem, and is the focus of this paper. By partitioning the process into two parts, one that accounts for nonlinear dynamics in a deterministic way, and another as a residual stochastic process, we develop a class of novel constructs that bridge the residual process via a linear approximation. In addition, we adapt a recently proposed construct to a partial and noisy observation regime. We compare the performance of each new construct with a number of existing approaches, using three applications.