Grabowski, Łukasz (2015) Group ring elements with large spectral density. Mathematische Annalen, 363 (1). pp. 637-656. ISSN 0025-5831
Full text not available from this repository.Abstract
Given δ>0δ>0 we construct a group GG and a group ring element S∈Z[G]S∈Z[G] such that the spectral measure μμ of SS fulfils μ((0,ε))>C|log(ε)|1+δμ((0,ε))>C|log(ε)|1+δ for small εε. In particular the Novikov-Shubin invariant of any such SS is 00. The constructed examples show that the best known upper bounds on μ((0,ε))μ((0,ε)) are not far from being optimal.
Item Type:
      
        Journal Article
        
        
        
      
    Journal or Publication Title:
          Mathematische Annalen
        Uncontrolled Keywords:
          /dk/atira/pure/subjectarea/asjc/2600/2600
        Subjects:
          ?? 20c07 20f6557m10general mathematicsmathematics(all) ??
        Departments:
          
        ID Code:
          79448
        Deposited By:
          
        Deposited On:
          10 May 2016 14:22
        Refereed?:
          Yes
        Published?:
          Published
        Last Modified:
          19 Sep 2025 09:20
         Altmetric
 Altmetric Altmetric
 Altmetric