Performance Evaluation of Cluster Validity Indices (CVIs) on Multi/Hyperspectral Remote Sensing Datasets

Li, Huapeng and Zhang, Shuqing and Ding, Xiaohui and Zhang, Ce and Dale, Patricia (2016) Performance Evaluation of Cluster Validity Indices (CVIs) on Multi/Hyperspectral Remote Sensing Datasets. Remote Sensing, 8 (4). pp. 1-22. ISSN 2072-4292

[img]
Microsoft Word (remotesensing-113614)
remotesensing_113614.docx - Accepted Version
Available under License Creative Commons Attribution.

Download (1MB)
[img]
Preview
PDF (remotesensing-08-00295)
remotesensing_08_00295.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3MB)

Abstract

The number of clusters (i.e., the number of classes) for unsupervised classification has been recognized as an important part of remote sensing image clustering analysis. The number of classes is usually determined by cluster validity indices (CVIs). Although many CVIs have been proposed, few studies have compared and evaluated their effectiveness on remote sensing datasets. In this paper, the performance of 16 representative and commonly-used CVIs was comprehensively tested by applying the fuzzy c-means (FCM) algorithm to cluster nine types of remote sensing datasets, including multispectral (QuickBird, Landsat TM, Landsat ETM+, FLC1, and GaoFen-1) and hyperspectral datasets (Hyperion, HYDICE, ROSIS, and AVIRIS). The preliminary experimental results showed that most CVIs, including the commonly used DBI (Davies-Bouldin index) and XBI (Xie-Beni index), were not suitable for remote sensing images (especially for hyperspectral images) due to significant between-cluster overlaps; the only effective index for both multispectral and hyperspectral data sets was the WSJ index (WSJI). Such important conclusions can serve as a guideline for future remote sensing image clustering applications.

Item Type:
Journal Article
Journal or Publication Title:
Remote Sensing
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1900
Subjects:
ID Code:
79102
Deposited By:
Deposited On:
19 Apr 2016 10:48
Refereed?:
Yes
Published?:
Published
Last Modified:
10 Apr 2020 02:57