Wadsworth, Jenny and Tawn, Jonathan Angus and Davison, Anthony and Elton, Daniel Mark (2017) Modelling across extremal dependence classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79 (1). pp. 149-175. ISSN 1369-7412
SuppMat_round3.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (254kB)
WTDE_dependence_final.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (610kB)
Abstract
Different dependence scenarios can arise in multivariate extremes, entailing careful selection of an appropriate class of models. In bivariate extremes, the variables are either asymptotically dependent or are asymptotically independent. Most available statistical models suit one or other of these cases, but not both, resulting in a stage in the inference that is unaccounted for, but can substantially impact subsequent extrapolation. Existing modelling solutions to this problem are either applicable only on sub-domains, or appeal to multiple limit theories. We introduce a unified representation for bivariate extremes that encompasses a wide variety of dependence scenarios, and applies when at least one variable is large. Our representation motivates a parametric model that encompasses both dependence classes. We implement a simple version of this model, and show that it performs well in a range of settings.