Lai, X.-Y. and Poli, Charles Joseph and Schomerus, Henning Ulrich and Figueira de Morrison Faria, C. (2015) Influence of the Coulomb potential on above-threshold ionization : a quantum-orbit analysis beyond the strong-field approximation. Physical review a, 92 (4): 043407. ISSN 1050-2947
CQSFA_Aug2015.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (776kB)
Abstract
We perform a detailed analysis of how the interplay between the residual binding potential and a strong laser field influences above-threshold ionization (ATI), employing a semianalytical, Coulomb-corrected strong-field approximation (SFA) in which the Coulomb potential is incorporated in the electron propagation in the continuum. We find that the Coulomb interaction lifts the degeneracy of some SFA trajectories and we identify a set of orbits that, for high enough photoelectron energies, may be associated with rescattering. Furthermore, by performing a direct comparison with the standard SFA, we show that several features in the ATI spectra can be traced back to the influence of the Coulomb potential on different electron trajectories. These features include a decrease in the contrast, a shift towards lower energies in the interference substructure, and an overall increase in the photoelectron yield. All features encountered exhibit very good agreement with the ab initio solution of the time-dependent Schrödinger equation.