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We perform a detailed analysis of how the interplay between the residual binding potential and a
strong laser field influences above-threshold ionization (ATI), employing a semi-analytical, Coulomb-
corrected strong-field approximation (SFA) in which the Coulomb potential is incorporated in the
electron propagation in the continuum. We find that the Coulomb interaction lifts the degeneracy of
some SFA trajectories, and we identify a set of orbits which, for high enough photoelectron energies,
may be associated with rescattering. Furthermore, by performing a direct comparison with the
standard SFA, we show that several features in the ATI spectra can be traced back to the influence
of the Coulomb potential on different electron trajectories. These features include a decrease in the
contrast, a shift towards lower energies in the interference substructure, and an overall increase in
the photoelectron yield. All features encountered exhibit a very good agreement with the ab initio
solution of the time-dependent Schrödinger equation.

PACS numbers: 33.80.Rv, 33.80.Wz, 42.50.Hz

I. INTRODUCTION

When matter interacts with a strong laser field of peak
intensity around 1014 W/cm2, the outmost electron may
be freed by absorbing many more photons than necessary.
This very highly nonlinear process is known as above-
threshold ionization (ATI) and has attracted consider-
able attention since the early work of Agostini and co-
workers [1]; for a review see Ref. [2]. For typical param-
eters employed in experiments, i.e., near infra-red laser
fields, it is commonly accepted that the electron reaches
the continuum by tunnel ionization. If the released elec-
tron revisits the parent ion in the presence of the laser
field [3, 4], this results in various additional highly nonlin-
ear phenomena, such as high-order ATI (HATI) [5], high-
order harmonic generation (HHG) [6], and nonsequen-
tial double ionization (NSDI) [7]. Recently, considerable
progress has been made in the study of these nonlin-
ear strong-field phenomena. For example, both ATI and
HHG have been employed as an important technique to
explore the electron shell structure and sub-femtosecond
dynamics [8–12], and NDSI has opened the door to the
study of strong-field electron-electron correlation [13–16].

In order to uncover the underlying physics of these
highly nonlinear phenomena, many theories and mod-
els have been proposed, such as the ab initio solution
of the time-dependent Schrödinger equation (TDSE) [17]
and the quantum-orbit theory within the strong-field ap-
proximation (SFA) [18–20]. Since the TDSE contains no
physical approximation, its outcome is widely taken as a
benchmark to evaluate the data in experiments and the
calculations of other theories and models [21–23]. How-
ever, in many occasions the TDSE does not provide a
transparent physical picture. Furthermore, since the nu-
merical effort involved in ab initio computations increases

exponentially with the degrees of freedom, its implemen-
tation is impractical for strongly correlated multielectron
systems. In contrast, the quantum-orbit theory provides
very clear physical insight in terms of distinct electron
ionization trajectories, and its outcome is qualitatively
consistent with the experimental data. Therefore, it has
been widely and successfully used in the modeling of
strong-field phenomena [18, 24–26]

One should note, however, that the validity of the
conventional quantum-orbit theory is limited. In fact,
the use of the SFA before the application of the saddle-
point approximation implies that a considerable amount
of physics is left out for the sake of a clear and intu-
itive picture [2]. In particular, the SFA fully neglects the
effect of the Coulomb potential of the parent ion on the
ionized electrons, approximating the continuum states by
field-dressed plane waves [27]. For single charged nega-
tive ions, this approximation is justified as the Coulomb
interaction between the neutral core and the freed elec-
tron is absent. However, for atoms and molecules, this
interaction is present, so that the SFA only works qual-
itatively. Furthermore, in recent years, several features
have been observed which clearly highlight the influence
of the Coulomb potential. Examples are the so-called
low-energy structure (LES) in ATI spectra [28–30], fan-
shaped structures in photoelectron momentum distribu-
tions [31–35], and the violation of the fourfold symmetry
in angular electron distributions for elliptically polarized
fields [36, 37].

Motivated by these observations, many methods have
been developed in the past few years in order to account
for the Coulomb potential in orbit-based methods. These
include (i) using Coulomb-Volkov functions to describe
the electron continuum states in the SFA [38–40]; (ii)
incorporating the binding potential in the electron prop-
agation using the eikonal Volkov approximation [41, 42];
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(iii) a Coulomb-corrected SFA (CCSFA), which takes the
trajectories from the SFA theory as a zero-order approx-
imation and accounts for the Coulomb field perturba-
tively [35, 43, 44]; (iv) a quantum-trajectory Monte Carlo
(QTMC), which is based on Classical-Trajectory Monte-
Carlo (CTMC) simulations, but considers the phase of
each trajectory [45]; (v) initial-value representations such
as the Herman-Kluk propagator [46–49] and the Coupled
Coherent States method [50–52]; (vi) a time-dependent
analytical R-matrix approach [53], which divides the
space into inner and outer regions and has been success-
fully used to study the many-electron systems [54].

Most of the above-mentioned approaches have been ap-
plied to and tested on direct ATI. This phenomenon is
a particularly good testing ground for Coulomb correc-
tions for two main reasons. First, the momentum range
involved is relatively low, so that the influence of the
Coulomb potential is expected to be significant. Sec-
ond, in contrast to high-order ATI, hard collisions are ex-
pected to be absent, so that the Coulomb corrections are
in principle easier to implement. In particular the influ-
ence of the Coulomb potential on quantum-interference
patterns has attracted a great deal of attention [35]. Fur-
thermore, it has been shown that the presence of the
Coulomb potential considerably alters the topology of
the orbits, giving rise to types of trajectories that are
absent in the SFA [44]. In particular, in Ref. [35] it has
been shown that sub-barrier corrections are necessary in
order to obtain the correct phases in the ATI electron
momentum distributions.

In this work, we develop a quantum-orbit theory with
Coulomb interactions that, besides the effect on the
phase, also accounts for the influence of the interactions
on the semiclassical amplitudes. We find that the ampli-
tude is significantly modified both via the atomic dipole
moment at ionization and due to the altered stability of
the trajectories during the electron propagation through
the continuum. This Coulomb-corrected method is then
employed to study the influence of the Coulomb potential
on the direct ATI ionization spectrum of Hydrogen. We
perform a systematic investigation of how the Coulomb
coupling changes the topology of the trajectories, which
are either decelerated or accelerated with regard to their
SFA counterparts. This leads to a decrease in the phase
difference between the contributions from different types
of trajectories, which influences the interference patterns
in the spectra. We also discuss how momentum non-
conservation lifts the degeneracy of certain SFA trajec-
tories. Furthermore, we verify that the distinction be-
tween direct and rescattered trajectories is blurred by
the presence of the binding potential, which causes a set
of trajectories to go around the core.

Our results show that the spectrum calculated with
this method is in much better agreement with the ab
initio TDSE result than the predictions of the standard
SFA. In particular, the Coulomb-corrected theory recov-
ers the much weaker contrast in the interference substruc-
ture observed in the TDSE, and relates this effect to the
unequal semiclassical weights of the electron trajectories

in the presence of the Coulomb interactions. Similarly
to what has been encountered in [35], we also observe
that the positions of the interference maxima in the spec-
trum from the quantum-orbit theory and TDSE result
are shifted with respect to the SFA simulations. How-
ever, our model indicates that these shifts mainly stem
from the modified electron propagation in the continuum.

This article is organized as follows. In Sec. II we de-
scribe the theoretical models employed in this paper,
namely the standard SFA and the SFA with Coulomb
corrections, starting from the TDSE. In Sec. III we apply
the theories to direct ATI and discuss the consequences
of the Coulomb interactions, first in terms of the indi-
vidual trajectories and then for the resulting ionization
spectrum. Finally, in Sec. IV, we summarize the main
conclusions to be drawn from this work. We use atomic
units throughout.

II. THEORETICAL MODELS

The underlying framework for the subsequent discus-
sions is the time-dependent Schrödinger equation

i∂t|ψ(t)⟩ = H(t)|ψ(t)⟩ . (1)

In the ionization problems considered in this work, the
Hamiltonian separates into two parts, H(t) = Ha+HI(t).
Here

Ha =
p̂2

2
+ V (r̂) (2)

denotes the field-free one-electron atomic Hamiltonian
and the hats denote operators. In the problem addressed
here, we consider a Coulomb-type potential

V (r̂) = − C√
r̂ · r̂

, (3)

where 0 ≤ C ≤ 1 is an effective coupling, which we vary
in a continuous fashion in order to assess the influence of
the Coulomb potential. For Hydrogen, C = 1. Further-
more, HI(t) describes the interaction with the laser field.
In the velocity and length gauges, this interaction is given
by HI(t) = p̂ ·A(t)+A2/2 and HI(t) = −r̂ ·E(t), respec-
tively, where E(t) = −dA(t)/dt is the external laser field.
The length gauge provides us with the physical picture
of ionization as a tunneling process driven by an effective
time-dependent potential. This gauge will be employed
throughout.

The time-evolution operator associated with this
Hamiltonian is of the general form

U(t, t0) = T exp

[
i

∫ t

t0

H(t′)dt′
]
, (4)

where T denotes time-ordering. This operator takes a
wave function from a time t0 to a time t, i.e., |ψ(t)⟩ =
U(t, t0)|ψ(t0)⟩, and satisfies

i∂tU(t, t0) = H(t)U(t, t0) ,

−i∂t0U(t, t0) = U(t, t0)H(t0) . (5)
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Employing the Dyson equation, the time-evolution oper-
ator may be written as

U(t, t0) = Ua(t, t0)− i
∫ t

t0

U(t, t′)HI(t
′)Ua(t

′, t0)dt
′ , (6)

where Ua(t, t0) is the time-evolution operator associated
with the field-free Hamiltonian.
For above-threshold ionization, the initial state is a

bound state |ψ0⟩, while the final state is a continuum
state |ψp(t)⟩ with drift momentum p. This gives the
ionization amplitude [2]

M(p) = −i lim
t→∞

∫ t

−∞
dt′ ⟨ψp(t)|U(t, t′)HI(t

′)|ψ0(t
′)⟩ ,

(7)
which is formally exact.

A. Strong-field approximation

Equation (7) cannot be solved in closed form, so that
approximations are required in order to compute the ATI
transition amplitude via analytical methods. A popular
approximation is to replace U(t, t′) by the Volkov time
evolution operator U (V )(t, t′) in Eq. (7). This implies
that the continuum has been approximated by Volkov

states, i.e., by field-dressed plane waves |ψ(V )
p (t)⟩, where

⟨r|ψ(V )
p (t)⟩ = ⟨r|p̃(t)⟩ exp

[
−i

∫ t

−∞
dτ

[p+A(τ)]2

2

]
(8)

with

⟨r|p̃(t)⟩ = exp[ip̃(t) · r]
(2π)3/2

. (9)

Here p̃(t) = p+A(t) in the length gauge and p̃(t) = p in

the velocity gauge, so that U (V )(t, t′)|ψp(t
′)⟩ = |ψ(V )

p (t)⟩
[? ]. This is the key idea behind the strong-field approx-
imation or Keldysh-Faisal-Reiss theory [27, 55, 56]. For
detailed discussions see, e.g., [57, 58] and the recent tu-
torials [59]. Within the SFA, the amplitude (7) is then
given by [2, 27, 55, 56]

M(p) = −i
∫ ∞

−∞
dt′ ⟨p+A(t′) |HI(t

′)| ψ0⟩ eiS(p,t′).

(10)
Here

S(p, t′) = −1

2

∫ ∞

t′
[p+A(τ)]2dτ + Ipt

′ (11)

is the semiclassical action, where Ip gives the ionization
potential and A(t) denotes the vector potential of the
laser field. In Eq. (10), we have also employed the nota-

tion |ψ0(t
′)⟩ = eiIpt

′ |ψ0⟩.
For sufficiently high intensity and low frequency of the

laser field, the temporal integration in Eq. (10) can be
evaluated by the saddle-point method [19, 20], which

seeks solutions such that the action (11) is stationary.
The corresponding saddle-point equation reads

[p+A(t′)]2

2
+ Ip = 0. (12)

Physically, Eq. (12) ensures the conservation of energy at
the ionization time t′, which leads to complex solutions
ts. In terms of these solutions, the transition amplitude
(10) can then be written as

M(p) ∼
∑
s

C(ts) ⟨p+A(ts) |HI(ts)| ψ0⟩ eiS(p,ts) ,

(13)
where the prefactors

C(ts) =

√
2πi

∂2S(p, ts)/∂t2s
(14)

are expected to vary much more slowly than the action
for the saddle-point approximation to hold. Since each
solution ts represents a distinct trajectory of the elec-
tron in the laser field, the sum in Eq. (13) denotes the
interference between different quantum paths, which has
been extensively studied in the literature (for reviews see,
e.g., [2, 60]). One should note that in the SFA, the field-
dressed momentum is conserved.

B. Coulomb Quantum-orbit Strong-Field
Approximation

Within the SFA, an electron no longer feels the atomic
potential after it has been promoted into the continuum
at the time ts, resulting in the considerable deviations
between this model and experimental results. In this sec-
tion we describe a Coulomb Quantum orbit Strong-Field
Approximation (CQSFA) which cures this shortcoming
of the SFA (for similar approaches see [37, 41–43]).

1. General considerations and derivation

In the presence of the Coulomb potential,the field-
dressed momentum is no longer conserved, and the time
evolution operator depends on both r̂ and p̂. As a re-
sult, the time evolution operator cannot be diagonalized
by the Volkov states (8). to compute the transition am-
plitude (7). First, it is useful to introduce the closure
relation

∫
dp̃0|p̃0⟩⟨p̃0| = 1, so that Eq. (7) is rewritten

as

M(pf )=−i lim
t→∞

∫ t

−∞
dt′
∫
dp̃0 ⟨p̃f (t)|U(t, t′)|p̃0⟩⟨p̃0|HI(t

′)|ψ0(t
′)⟩ ,

(15)
where |p̃f (t)⟩ = |ψp(t)⟩ and p̃0 = p0 +A(t′) denotes the
velocity of the electron at the initial time t′. Similarly,
the final electron velocity is given by p̃f (t) = pf +A(t).

The momentum-space matrix element
⟨p̃f (t)|U(t, t′)|p̃0⟩ will now be rewritten by employ-
ing the Feynman path-integral formalism [65]. This
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means that the time-evolution operator U(t, t′) is sliced
into N +1 time-evolution operators with an infinitesimal
time slice of width ε = tn − tn−1 = (t − t′)/(N + 1),
where p̃f (t) = p̃N+1, tN+1 = t, and t0 = t′. This gives

⟨p̃f (t)|U(t, t′)|p̃0⟩ =
N∏

n=1

[∫
dp̃n

]N+1∏
n=1

[∫
drn
(2π)3

]
eiAN ,

(16)
where

AN=
N+1∑
n=1

−(p̃n − p̃n−1) · rn − ε[p̃2
n/2 + rn ·E(tn) + V (rn)].

(17)
In the continuous limit,

⟨p̃f (t)|U(t, t′)|p̃0⟩ =
∫ p̃f (t)

p̃0

D′p̃

∫
Dr

(2π)3
eiA(p̃,r), (18)

with

A(p̃, r) =

∫ t

t′
dτ [− ˙̃p · r(τ)−H(p̃, r, τ)], (19)

and

H(p̃, r, τ) = p̃2/2 + r(τ) ·E(τ)− C√
r(τ) · r(τ)

, (20)

where p̃(τ) = p+A(τ), t′ ≤ τ ≤ t, is the intermediate
velocity of the electron and D′ expresses the fact that
there are fewer integrals in pn [see Eq. (16)]. Physically,
Eq. (18) denotes the integration over all paths from p̃0

to p̃f (t).
Therefore, the Coulomb corrected transition amplitude

becomes

M(pf ) = −i lim
t→∞

∫ t

−∞
dt′

∫
dp̃0

∫ p̃f (t)

p̃0

D′p̃

∫
Dr

(2π)3

×eiS(p̃,r,t′,t)⟨p̃0|HI(t
′)|ψ0⟩ , (21)

where the action is given by

S(p̃, r, t′, t) = Ipt
′ +A(p̃, r), (22)

with E(t) = −∂tA(t),

S(p̃, r, t′, t) = Ipt
′ −

∫ t

t′
[ṗ(τ) · r(τ) +H(r(τ),p(τ), τ ]dτ,

(23)
and

H(r(τ),p(τ), τ) =
1

2
[p(τ) +A(τ)]

2 − C√
r(τ) · r(τ)

.

(24)
One should note that the problem is solved in the length
gauge, and Eq. (24) can be obtained from the standard
length-gauge Hamiltonian by a partial integration. This
issue has been also discussed in detail in Ref. [69].
Following the same procedure as for the SFA, we can

now obtain the Coulomb-corrected transition amplitude

by applying the saddle-point approximation. By con-
struction, the saddle-point equation on t′ leads to the
condition

[p0 +A(t′)]2

2
+ Ip + V [r(t′)] = 0. (25)

The Coulomb-corrected transition amplitude is then
given by

M(pf ) = −i lim
t→∞

∫
dp̃0

∫ p̃f (t)

p̃0

D′p̃

∫
Dr

(2π)3

∑
s

C(ts)

× eiS(p̃,r,ts,t) ⟨p0 +A(ts) |HI(ts)| ψ0⟩ , (26)

where ts are the solutions of the saddle-point equation
(25) which are again complex, and we consider the ini-
tial momentum p0 = p(ts) in Eq. (14). We then use
the semi-classical path integral theory developed by Van
Vleck and Gutzwiller [66] on the paths [p(τ)], and [r(τ)].
The associated saddle-point equations take the form of
classical equations of motion for the trajectories,

ṗ(τ) = −∇rV [r(τ)] , (27)

ṙ(τ) = p(τ) +A(τ) , (28)

whose solutions are rs(τ) and ps(τ). In terms of such
solutions, the Coulomb-corrected transition amplitude fi-
nally reads

M(pf ) ∝ −i lim
t→∞

∑
s

{
det

[
∂ps(t)

∂rs(ts)

]}−1/2

C(ts)eiS(p̃s,rs,ts,t)) ⟨ps(ts) +A(ts) |HI(ts)| ψ0⟩ . (29)

The sum is over the classical trajectories that begin at
position r(ts) at time ts, and end at momentum p(t) at
time t → ∞ (sum over multiple solutions with identical
ts is implied), and the action S(p̃s, rs, ts, t) is given by
Eq. (22). Throughout, we have considered the principal
branch. In practice, t should be taken to be sufficiently
long so that the electron is far away from the core.

Due to the presence of the binding potential, the
above-stated equation exhibits branch cuts for Re[rs(τ) ·
rs(τ)] < 0 and Im[rs(τ) · rs(τ)] = 0. For vanishing
transverse momenta, the branching points turn into first-
order poles and this problem is absent (for details on
these branch cuts see Ref. [70]). These branch cuts can
be avoided if one takes the integration contour along
the real time axis once the electron is in the contin-
uum. More specifically, the time integration contour is
taken first parallel to the imaginary time axis, and then
along the real time axis. This is the procedure taken
by most groups when implementing Coulomb-corrected
strong-field theories (see, e.g., Refs. [35, 71]).

Furthermore, besides the SFA factor (14) and the tun-
nel matrix element ⟨ps(ts) +A(ts) |HI(ts)| ψ0⟩, the am-

plitude now involves the stability ∂ps(t)
∂rs(ts)

of the trajec-

tories. In the limit of vanishing binding potential, the
usual SFA is recovered [61]. However, as we will see,
this happens in a nontrivial fashion when the degeneracy
breaking of trajectories is taken into account.



5

2. Practical implementation

In order to simplify the calculation and isolate the
main effects of the potential on the trajectories, we as-
sume that the electron is ionized by tunneling from the
time ts to tRs = Re ts at a fixed momentum ps(ts) and
then moves to detector with the real time and coordinate
according to the classical equations of motion (27) and
(28). This is the most widely used assumption for the
contour, and has been employed in [35, 43, 44] (for a re-
view see [69]). Because we assume that the momentum of
the electron is fixed during the tunneling ionization, it is
a reasonable approximation to neglect the Coulomb po-
tential in Eq. (25), which thus reduces to Eq. (12). The
point in space for which the time becomes real is widely
known as “the tunnel exit”. Physically, this also gives
the point in space at which the electron tunnels out of
the potential barrier.
The tunneling exit at the time tR is given by

z0 = α(tRs )− Reα(t) , (30)

where α(t) =
∫ t

A(τ)dτ [72]. We use the tunnel exit
approximation (30) to split the action into a part inside
the barrier,

S̃in
s (p̃s, rs, ts) = −

∫ tRs

ts

H(rs,ps, τ)dτ (31)

with the tunneling trajectory rs(t) =
∫ t

ts
[ps(τ)+A(τ)]dτ

[43] and a part outside the barrier,

S̃out
s (p̃s, rs, ts) =

∫ Tp

tRs

dτ [−ṗs(τ) · rs(τ)−H(rs,ps, τ)],

(32)
with the ionization trajectory determined as described
in the previous subsection. Note that, in Eq. (31), the
term in ṗs is vanishing as the drift momentum inside
the barrier was taken to be constant. Furthermore, real
variables outside the barrier will lead to real stability
factors, so that phase differences in the continuum stem
exclusively from the action. The part inside the barrier
is starting from the origin up to the tunnel exit. In prac-
tice, because of the singularity of the Coulomb potential
at the origin, the tunneling time is shifted along the con-
tour by a very small value, so that the trajectory of the
electron begins not exactly at the origin. However, the
initial coordinate is still sufficiently close to it so that the
transformation below can be used. The same procedure
is also performed in Ref. [71]. In this work, we have also
considered the same shift for the imaginary part of the
tunneling time as in [71], namely iω/(2Ip).
Within the CQSFA, we calculate the stability of the

trajectories numerically. In practice, instead of using
∂ps(t)/∂rs(ts) in Eq. (29) we employ ∂ps(t)/∂ps(ts).
The latter stability factor is of easier implementation,
and can be obtained using a Legendre transformation in
the transition amplitude (26). Upon this transformation,
the action will remain the same as long as the electron

starts from the origin. For details on Legendre transfor-
mations see, e.g., [77]. The normalization constants in
the above-stated equations are such that, in the limit of
vanishing binding potential, the SFA transition ampli-
tude is recovered.

Our method is closely related, but different from the
existing CCSFA [35, 43, 44] and the Eikonal Volkov
approximation [41, 42]. Conceptually, our derivation
is based on the Feynman path integral approximation,
which is applied to the time-evolution operation in the
presence of the Coulomb potential. This is a different
starting point from the derivations in [35, 41–44]. The
eikonal Volkov approximation starts from a laser-dressed
WKB-type approximation and requires small scattering
angles. The CCSFA theory takes the Coulomb-free tra-
jectories as a zero-order approximation and accounts for
the Coulomb field perturbatively via corrections to the
classical action. It is noteworthy that neither method
leads to the extra term ṗs(τ) · rs(τ), which is obtained
in our computations. This term is necessary to obtain
the correct phases and contrast, and keep the trajecto-
ries real in the continuum. Furthermore, we solve the
inverse problem, i.e., for a given a final momentum, we
compute the initial momentum, while in the CCSFA di-
rect propagation with a shooting method is employed.

III. RESULTS AND DISCUSSION

In the results that follow, we use the monochromatic
laser field

E(t) = ẑE0 sinωt, (33)

where E0 is the peak electric field amplitude. For this
type of field, the vector potential of the laser field A(t) ∝
cos(ωt)ẑ. Hence, whenever there is a crossing for A(t)
there will be a crest for E(t). In a practical calculation,
however, one must consider a pulse of finite duration.
In our work, the electron is ionized at the time near
t = 0, i.e., −π/2 < ωts < π/2, and then the ionized
electron moves in the presence of the laser field and the
Coulomb potential until the time Tp = 15.25 cycles, with
A(Tp) = 0 and |E(Tp)| = E0. In the SFA theory, for
a given final momentum p, there are two solutions ts of
Eq. (12) per cycle of the laser field. In [44], these solu-
tions have been related to Orbits I and II, depending on
whether the electron leaves in the same or in the opposite
direction to the detector. In the results that follow, we
will consider this classification and its extension to the
Coulomb-corrected case.

The initial states are taken as the ground state of
Hydrogen, i.e., ψ0(r) = ⟨r|ψ0⟩ = e−r/

√
π. In this

case, the tunnel matrix element in Eq. (29) becomes re-
lated to the atomic dipole moment and can be simpli-
fied as ⟨ps(ts) +A(ts) |− r ·E(ts)| ψ0⟩ ∼ E(t)p̃0z, where
p̃0 = ps(ts)+A(ts) [67]. Unless otherwise stated, we will
consider C = 1 in V (r).
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FIG. 1: (Color online) Illustration of the four types of CQSFA
trajectories in the zx plane for electrons with fixed final
momentum pf , computed using a linearly polarized square
pulse which ends at the time Tp = 15.25 cycles, of intensity
I = 2 × 1014W/cm2 and frequency ω = 0.057 a.u., and a
Coulomb potential (3) with C = 1. The ionization potential
has been taken as Ip = 0.5 a.u. The black dot denotes the
position of the nucleus. The inset shows the region near the
core.

A. Coulomb-corrected saddle-point solutions and
their physical implications

In comparison with the SFA, the canonical momentum
p of the electron is time-dependent according to Eq. (27)
if the Coulomb interaction is incorporated. Therefore, in
the CQSFA theory, the greatest challenge is to solve the
saddle-point equations for the tunneling time t′ and the
canonical momentum p0 for any given final momentum
pf . One should also bear in mind that, in experiments,
the measured photoelectron spectra is a function of the
final momentum. Therefore, if, for a given final momen-
tum, the initial conditions for the corresponding electron
trajectories could be obtained reversely, it would be eas-
ier to understand how these trajectories were influenced
by the Coulomb potential.

Figure 1 depicts four types of trajectories in the zx
plane for an electron with a given final momentum pf .
For trajectories of type I, the tunneling exit z0 > 0, and
the electron moves directly towards the detector with-
out returning to its parent core. For the type II and III
trajectories, the tunneling exit z0 < 0, meaning that the
initial motion carries the electron away from the detec-
tor before it turns around and ends up with the stipu-
lated momentum pf . A closer inspection shows that they
are similar to Kepler hyperbolae to which a drift motion
caused by the field is superimposed [33, 44]. Trajectory
types I and II are similar to the so-called “short” and
“long” trajectories in the SFA theory. The type III is not
found in the SFA and can be observed after the Coulomb
potential is considered, which is consistent with earlier
work [44].
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FIG. 2: (Color online) Emergence of the two distinct trajec-
tories II and III. (a) For ionization parallel to the field, the
trajectories are part of a torus, respecting the rotational in-
variance of the system. In the SFA, this torus would contract
to a point as momentum conversion then dictates that the
initial momentum vanishes. At a finite tilt angle of the final
momentum (here 2◦), however, the torus splits into two dis-
tinct solutions, II and III (red and green). (b) As the Coulomb
interaction strength C is then reduced, trajectories II and III
merge, and remain distinct from trajectory I (here the tilt an-
gle of the final momentum is 1◦). The remaining parameters
are the same as in the previous figure.

As we show in Fig. 2(a), the emergence of the new
trajectory is directly related to the momentum non-
conservation. It is instructive to start with the case of
ionization parallel to the field, where the final momen-
tum pf is along the polarization direction. On first in-
spection, the type II and III trajectories are symmet-
ric with respective to the polarization direction. As a
matter of fact, trajectories II and III then degenerate
into a torus, with a finite initial transverse momentum.
In the SFA, the torus contracts onto a single trajectory
with a vanishing initial transverse momentum, as dic-
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FIG. 3: (Color online) Behavior of type IV orbits for increas-
ing photoelectron energy. The field and atomic parameters
are the same as in the previous figures, and the energy is
indicated on the upper right corner. A blow-up of the fig-
ure shows the trajectories approaching the origin, which is
marked by a black dot. The field and atomic parameters are
given in Fig. 1.

tated by momentum conservation. At a finite tilt angle,
the torus splits in analogy to the Poincaré-Birkhoff sce-
nario in KAM theory, leaving two clearly distinct trajec-
tories. As we change the effective Coulomb interaction
strength C from C = 1 (Hydrogen) to C = 0, the situa-
tion from the SFA is again recovered [panel (b) in Fig. 2].
It is noteworthy that our numerics uncover an addi-

tional trajectory type, denoted as IV. Although the tun-
nel exit points towards the detector, the electron is driven
back to the core by the laser field, then goes around the
core, and finally moves towards to the detector. With in-
creasing photoelectron final momentum, the shortest dis-
tance between the electron and the core decreases. This
distance can be smaller than the tunnel exit. In this
case, this type of trajectory corresponds to a rescatter-
ing event. This behavior is shown in Fig. 3.
Since the contribution of events involving rescatter-

ing to the low-energy photoelectron spectra is small, it
can be safely neglected, so that we only need to consider
the type I-III trajectories. However, it is encouraging
to see that rescattering contributions already show up
within a framework that is formally tailored for direct
ATI, even though they eventually may require a more ac-
curate treatment including rescattering form factors that
account for the inherently diffractive, nonclassical nature
of these events [19, 24].

B. Photoelectron spectrum

Based on the trajectories described in the previous sub-
section we now study the photoelectron spectrum within
the CQSFA theory and compare the result with the stan-
dard SFA, while taking the ab initio TDSE calculation as
a benchmark. The standard SFA is implemented accord-
ing to Eq. (13). The TDSE has been computed using
the freely available software Qprop [76]. In the TDSE
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FIG. 4: (Color online) Photoelectron spectra for ionization
along the laser polarization direction, with the standard SFA,
the Coulomb-corrected CQSFA, and from ab initio TDSE cal-
culation. The blue (dash-dotted) solid curve is the envelope of
the TDSE calculation. In order to perform a clearer compari-
son, the TDSE spectrum has been shifted upwards in around
one order of magnitude. The laser-field and atomic parame-
ters are given in Fig. 1.

calculation, the initial state is the ground state of the
Coulomb potential (3) which is obtained with imaginary
time propagation and is subjected to a long laser pulse
E(t) = ẑE0 sin(ωt)f(t) with a trapezoidal profile f(t) (up
and down-ramped over 2 cycles, constant over 10 cycles).
In practice, the electron wavefunctions are expanded in
spherical harmonics and the range of the radial space is
from 0 to 6000 a.u. with grid spacing ∆r = 0.1 a.u. Dur-
ing the real time propagation, the time step ∆t = 0.025
a.u. and the maximal angular momenta is 30.

The resulting photoelectron spectra in the direction
along the laser polarization are shown in Fig. 4. Since
the SFA and CQSFA only account for the interference
of the electrons ionized in one optical cycle, the spectra
correspond to an envelope, without the sharp ATI peaks
shown in the ab initio calculation. We therefore also show
the envelope of the spectrum from the ab initio method.
Clear interference structures are observed in all spectra.
A closer inspection shows that the interference contrast
in the spectra from the TDSE and the CQSFA theory is
much weaker than that from the SFA theory. Moreover,
the positions of the interference maxima in the CQSFA
spectrum are in a better agreement with the TDSE result
than the SFA.

The mechanisms leading to these improvements are ex-
plained in the next subsections. For reference, it is useful
to inspect how the Coulomb corrections are established
when one changes the effective interaction strength C, so
that for C = 0 the SFA is recovered. Fig. 5 shows the
photoelectron spectra for different values of C.
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FIG. 5: (Color online) Photoelectron spectra from the CQSFA
theory with different strengths C of the rescaled Coulomb
potential given by Eq. (3). For C = 0 the spectrum coincides
with that of the SFA theory. The remaining laser-field and
atomic parameters are given in Fig. 1.
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FIG. 6: (Color online) Amplitude of each trajectory type as
a function of the photoelectron energy (a) within the SFA
theory and (b) within the CQSFA theory. The laser-field and
atomic parameters are given in Fig. 1.

1. Interference contrast

First, we consider the effect of the Coulomb potential
on the interference contrast. According to the discussion
above, the type I-III trajectories are dominant for the
electrons with low kinetic energy. For the photoelectron
spectrum along the laser polarization, type II and III tra-
jectories are symmetric with respect to the polarization
direction and have the same phase and amplitude. There-
fore, the interference pattern in the spectrum arises from
the beating between type I trajectory and type II and III
trajectories. In Fig. 6, we present the amplitude related
to each orbit as a function of the photoelectron energy
with and without Coulomb corrections, respectively.
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FIG. 7: (Color online) Time of tunneling as a function of
the photoelectron energy. (a) for the type I orbit and (b) for
the type II orbit. The time is separated into two parts: real
part and imaginary part. The black curves are for the SFA
calculation and the red (gray) curves are from the CQSFA.
The laser-field and atomic parameters are given in Fig. 1.

In the SFA theory, the amplitudes associated with the
type I and the type II trajectories are the same. This
holds because in the SFA the electron’s final momentum
is solely determined by the ionization time, which for
trajectories I and II are displaced by half a cycle. This
means that the absolute values of the electric field, and
hence the ionization probability, are the same. Therefore,
in the SFA the interference contrast will be maximal. If
the Coulomb potential is included, the amplitudes of the
type I and II/III trajectories differ slightly. Furthermore,
the joint amplitude of the type II and III trajectories
exceeds that of type I significantly. All this leads to a
much reduced contrast of the interference pattern [? ].

Phenomenological insight into the amplitude difference
between the type I and type II/III trajectories can be ob-
tained by considering the tunneling time and initial mo-
mentum as a function of the photoelectron energy. The
imaginary part Im [ts] can be interpreted as the time it
takes the electron to tunnel through the potential bar-
rier [68]. The larger Im [ts] is, the lower the ionization
rate. Fig. 7 exhibits the time of tunneling as a function
of the photoelectron energy for the type I orbit and the
type II orbit, respectively. For the type I orbit, Im [ts]
increases when the Coulomb potential is taken into ac-
count. In contrast, for type II and III trajectories, Im[ts]
is smaller in the CQSFA than in the SFA. Therefore, if
the Coulomb corrections are present, the amplitude of
the type I will be smaller than that of type II. These
features are consistent with the changes in Re[ts], which,
for Orbit I, move towards the field crossing and, for Or-
bits II/III, is displaced towards the times for which the
field amplitude is maximal. This implies that the effec-
tive potential barrier will be wider for the former orbits
and narrower for the latter.
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FIG. 8: (Color online) Initial momentum for trajectories of
type I (a) and II (b) as a function of the photoelectron energy.
The momentum is separated into the parallel and perpendicu-
lar components. The blue (dash-dotted) curve in (b) denotes
the total momentum from the CQSFA theory. The laser-field
and atomic parameters are given in Fig. 1. The subscripts ∥
and ⊥ refer to the components of the initial momentum p0

parallel and perpendicular to the laser-field polarization.

According to the Ammosov-Delone-Krainov (ADK)
theory [73], these observations can be linked to the ini-
tial momentum, with a large momentum translating into
a reduced ionization rate. Fig. 8(a) shows that for trajec-
tories of type I, the initial momentum from CQSFA the-
ory is indeed larger than that from the SFA calculation.
This can be understood from the fact that the electron
needs to compensate the deceleration in the Coulomb po-
tential as it moves towards the detector. In contrast, for
type II and III trajectories, the initial parallel momen-
tum from the CQSFA theory is smaller than in the SFA.
Although there is a nonvanishing perpendicular momen-
tum from the CQSFA theory, the total initial momentum
[see blue curve in Fig. 8(b)] is still lower than that from
the SFA theory. This indicates that the electron accel-
erates significantly due to the interplay of the Coulomb
potential and the laser field as it passes near the core.
We conclude that the amplitude difference between the
different types of trajectories is generally consistent with
the phenomenological picture of the ADK theory.
Physically, the above-mentioned behavior can be at-

tributed to the fact that the Coulomb potential deceler-
ates the electron for Orbit I, which hinders ionization. In
contrast, for orbits II and III, the Coulomb potential ac-
celerates the electron. Hence, the electron acquires an ad-
ditional pull, and may escape moving along laser-dressed
Kepler hyperbolae.

2. Positions of interference maxima

We turn to the positions of interference maxima in the
spectra. Fig. 4 shows that the positions of the interfer-
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FIG. 9: (Color online) Phase difference ∆Φ = ΦI − ΦII (in
units of π) between trajectories of type I and II as a function
of the photoelectron energy. The arrows denote the positions
of the interference maxima, where ∆Φ = 2kπ, k = 1, 2, ....
The laser-field and atomic parameters are given in Fig. 1.

ence maxima in the spectra from the CQSFA theory are
shifted when compared with the SFA. Since the positions
of interference maxima are determined by the phase dif-
ference between different types of trajectories we study
how this is affected by the Coulomb potential. In Fig. 9,
we show the phase difference between the type I and type
II trajectories as a function of the photoelectron energy.
After considering the Coulomb potential, the dynamical
phase difference from the CQSFA becomes smaller than
that from the SFA. This can be traced back to the fact
that the type II trajectory accumulates a larger nega-
tive phase contribution from the Coulomb potential as it
passes by the core. Overall, this reduces the phase dif-
ference to trajectory I. A similar analysis has been em-
ployed in our previous publication [26], in the context of
ATI with elliptically polarized fields.

Note that the reduction of the phase difference ap-
proaches 2π, so that neglecting multiples of 2π one can
also interpret the large shift towards lower energies as
a small shift towards larger energies. This ambiguity is
resolved when we consider the effect of the continuously
rescaled Coulomb potential in Fig. 5, which shows how
a large shift towards smaller energies is established as C
increases. These results are also consistent with the re-
cent TDSE simulations in [63], and with the outcome of
similar Coulomb corrected approaches [35, 43].

3. Overall ionization amplitude

Finally, we turn to the overall ionization amplitude of
the spectra. As we can see from Fig. 4, the ionization
amplitude from the Coulomb-corrected theory is much
larger than that from the SFA. Enhanced tunnel ioniza-
tion is a well-known effect caused by Coulomb corrections
to the effective potential barrier. It was first predicted
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FIG. 10: (Color online) Photoelectron spectra from the
CQSFA theory and the SFA theory, respectively. The red
(solid) curve is the spectrum from the CQSFA, but without

the subbarrier Coulomb term I = −
∫ tRs
ts

V [r(τ)]dτ . The laser-

field and atomic parameters are given in Fig. 1.

in [79] and subsequently observed in several Coulomb-
corrected strong-field calculations [41, 80]. Furthermore,
in the 1980s the Coulomb-induced orders-in-magnitude
enhancement of tunnel ionization rates of atoms and pos-
itive ions was well documented in experiments [64]. In-
tuitively, it can be understood that compared to the SFA
theory, the barrier for a Coulomb potential is smoother
and lower, making it easier for the electron to tunnel
through. Within the CQSFA, this enhancement of the
ionization amplitude mainly originates from Coulomb

term I = −
∫ tRs
ts
V [r(τ)]dτ in the sub-barrier action (31).

Fig. 10 shows the result if this term is neglected. The
overall magnitude of the spectrum is then comparable
to the SFA. In the CQSFA this term contributes with a
negative imaginary part Im I < 0, and thus increases the
ionization amplitude.
One should note, however, that the overall probabil-

ity in the CQSFA simulation depends on the shift of the
tunneling time performed in this computation in order to
avoid the Coulomb singularity at the origin. The CQSFA
simulation shows that the smaller the shift of the tunnel-
ing time is, the larger the ionization yield will be. Hence,
another method must be applied in order to overcome
this problem, in order to make a definitive statement
about a quantitative agreement with the TDSE. We have
also verified that the contrast and the position of the
intra-cycle interference structure are not altered by this
parameter.

IV. CONCLUSIONS

In this work, we develop and use a path-integral for-
mulation to assess the influence of the residual Coulomb
potential in above-threshold ionization. We focus on the

direct transition amplitude, in which hard collisions with
the core are not incorporated. In general, the photo-
electron spectra obtained with the Coulomb-corrected
method presented in this paper exhibits a superior agree-
ment with the ab initio solution of the time dependent
Schrödinger equation to that encountered for the plain
strong-field approximation (SFA). This is especially true
for the interference substructure in the spectra. As far as
the overall ionization probability is concerned, however, a
definitive statement cannot yet be made, as it depends on
the initial shift in time employed in the sub-barrier part
of the contour to avoid the Coulomb singularity. We have
however evidence that the presence of the Coulomb po-
tential leads to an increase in the overall ionization yield,
which is in line with other Coulomb corrected strong-field
theories.

We also perform a systematic analysis of how the
Coulomb potential modifies the orbits along which the
electron may leave its parent ion and reach the detector.
We compare our results with those of the SFA, and make
an assessment of how, in the limit of vanishing Coulomb
coupling, the SFA is recovered. The present formulation
is closely related to the concept of quantum orbits widely
employed in semi-analytical strong-field approaches with
and without Coulomb corrections.

We have built upon the existing knowledge that the
Coulomb potential introduces a richer topology in the
electron motion [44], with four distinct sets of orbits, and
have related these orbits to those in the SFA in a more
systematic way. Throughout, we have employed the same
classification as in [44], which specify these four sets as
Orbits type I to IV. In particular, we have found that, for
electron emission along the polarization axis, due to the
rotational symmetry with regard to the field axis, Orbits
II and III will be located on a torus. This torus will con-
tract for decreasing Coulomb coupling, until it becomes
a point. Physically, this means that, for the SFA, Orbits
type II and III will merge into a single, degenerate orbit
if the final electron momentum is parallel to the laser-
field polarization. For non-vanishing emission angle, the
above-mentioned torus will break down, and there will
be two discrete solutions. This behavior indicates that,
strictly speaking, Orbits type II and III should not be
treated independently in an asymptotic expansion when
computing photoelectron spectra and momentum distri-
butions. Indeed, a rigorous treatment would require solv-
ing the integral around the manifold exactly for a final
momentum along the axis, and a uniform approximation
for non-vanishing emission angle [74, 75]. This strongly
suggests that the cusps observed in [35, 44] close to the
so-called ATI low-energy structure are related to this ef-
fect. It is indeed noteworthy that a very good agreement
between the TDSE and the Coulomb-corrected SFA in
[35, 44] was obtained throughout, except in this region
(see also the discussion of this cusp in the review [69]).
We have however not studied the above-mentioned cusp
systematically.

Furthermore, our results indicate that, if the Coulomb
potential is accounted for, the concepts of “direct” and
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“rescattered” electrons are not very clear-cut. These con-
cepts are very clear in the SFA, as there are either hard
collisions with the core, or no collisions at all. If the
Coulomb corrections are present, however, the Coulomb
potential strongly deflects Orbits type IV. These orbits
go around the core, and there is a marked decrease in the
electron’s shortest distance from the origin as the pho-
toelectron momentum increases. For high enough mo-
mentum, this distance is located in a region in which the
binding potential is dominant. This behavior could be
interpreted as a type of recollision, which is absent in the
SFA. The amplitude associated with this type of trajec-
tories is however very small and hence not relevant to
the computation of ATI spectra in the parameter range
of interest.
In addition to that, we have investigated the influence

of the Coulomb potential on the ATI spectra, with em-
phasis on the interference contrast and position of the
maxima. This influence has been traced back to partic-
ular sets of orbits. First, the contrast in the interfer-
ence structure decreases, in comparison with the SFA.
This happens because, in the SFA, Orbits I and II are
equivalent, and displaced by half a cycle, while, if the
Coulomb potential is included, this no longer holds. In
fact, the Coulomb potential will decelerate the electron
if it reaches the continuum along Orbit I, and will accel-
erate the electron if it is ionized along Orbits II and III.
This will lead to an increase in the amplitudes associated
with Orbits II and III, and to a decrease in the ampli-
tude related to Orbit I. Furthermore, there is the joint
effect of Orbits II and III, which will weaken the fringes.
Recently, the influence of Orbit III on interference effects
has also been investigated in a different context, namely
side-lobes in ATI electron momentum distributions, and
it has been found to be significant [78].
The suppression of Orbit I and the enhancement of Or-

bits II and III has been confirmed by a systematic anal-
ysis of the initial momenta and ionization times. For Or-
bit I, the initial momentum increases when the Coulomb
potential is considered, while, for type II/III orbits, the
initial momentum decreases. Physically, this means that
the Coulomb potential hinders ionization along Orbit I,
as the electron will require a larger momentum to escape.
For Orbits II/III, the Coulomb potential accelerates the
electron after the tunneling ionization, so that a lower
escape momentum is required. An increase in the ini-
tial momentum for the type I orbits also implies that the
electron ionization time has moved away from the field
maximum towards the field crossing. This means that
the effective potential barrier through which it must tun-
nel will widen. Hence, there is also an increase in Im[ts].
In contrast, for Orbits type II/III, the tunneling time

moves to the crest of the laser field and thus the effective
potential barrier becomes narrower. These observations
are consistent with the changes in the real parts Re[ts] of
these times, as shown in Fig. 7.

Similarly to the results reported in [35, 43, 71], we also
find that there is a phase shift towards lower energies in
the interference maxima. In our model, this phase dif-
ference occurs due to Coulomb effects in the continuum
propagation, while sub-barrier corrections mainly influ-
ence the overall yield. In contrast, in [35, 43], this phase
difference is attributed to sub-barrier corrections instead.
While the contour taken by us and the assumption that
all variables are real outside the barrier are also employed
in [35, 43], the term ṗs(τ) ·rs(τ) is absent in their action.
Eq. (27) shows that this term is proportional to the gra-
dient of the binding potential. Its value is small for Orbit
I, which moves towards the detector directly, while it is
large for Orbits II and III, which are deflected by the core
before reaching the detector. We have indeed verified
that the phase from this term plays an important role in
our formulation. Indeed, if this term is removed from the
action, there is significant deviation between the TDSE
and CQSFA results. The stability factors employed here
are also different from those in [35, 43, 44], but they in-
fluence mainly the contrast and not the position of the
maxima. They are, however, very important for a good
agreement with the full TDSE computations. This term
is also absent in [71], in which the Eikonal-Volkov ap-
proximation is employed and the phase differences are
obtained along propagation by using a complex interme-
diate coordinate. Since, however, in [71] circularly polar-
ized light is used, it is expected to be vanishingly small
as the electron never returns to the core after tunneling
ionization. We expect that the present analysis will con-
tribute to a better understanding of cusps and the ATI
low-energy structure in the future.
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Bergues, H. Hultgren, and I. Yu. Kiyan, Phys. Rev. Lett.
104, 103004 (2010).

[6] M. Ferray, A L’Huillier, X. F. Li, L. A. Lompré, G. Main-
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