Braun, Christopher (2012) Moduli spaces of Klein surfaces and related operads. Algebraic and Geometric Topology, 12 (3). pp. 1831-1899. ISSN 1472-2747
Abstract
We consider the extension of classical 2-dimensional topological quantum field theories to Klein topological quantum field theories which allow unorientable surfaces. We approach this using the theory of modular operads by introducing a new operad governing associative algebras with involution. This operad is Koszul and we identify the dual dg operad governing A-infinity algebras with involution in terms of Mobius graphs which are a generalisation of ribbon graphs. We then generalise open topological conformal field theories to open Klein topological conformal field theories and give a generators and relations description of the open KTCFT operad. We deduce an analogue of the ribbon graph decomposition of the moduli spaces of Riemann surfaces: a Mobius graph decomposition of the moduli spaces of Klein surfaces (real algebraic curves). The Mobius graph complex then computes the homology of these moduli spaces. We also obtain a different graph complex computing the homology of the moduli spaces of admissible stable symmetric Riemann surfaces which are partial compactifications of the moduli spaces of Klein surfaces.