Kerridge, Andrew (2013) A RASSCF study of free base, magnesium and zinc porphyrins : accuracy versus efficiency. Physical Chemistry Chemical Physics, 15 (6). pp. 2197-2209. ISSN 1463-9076
Full text not available from this repository.Abstract
The restricted-active-space self-consistent-field methodology is successfully applied to the study of free base-and regular metalloporphyrins, the latter containing magnesium and zinc central ions. It is shown that inclusion of all excitations involving the Gouterman frontier orbitals in the RAS2 subspace results in a numerically stable approach, producing highly accurate results at a fraction of the computational cost of the complete-active-space self-consistent-field method, whereas increasing RAS2 beyond this size leads to only modest improvement. Topological and orbital analysis shows that the approach is also able to give a highly accurate description of the electronic wavefunction. Inclusion of the entire p-conjugated subsystem in the active space results in more accurate excitation energies and a reduction in the dependence on the exact form of the perturbational Hamiltonian used to include dynamic correlation. The larger active space also resolves a quantitative disagreement in results obtained with and without the inclusion of dynamic correlation.