Face recognition using support vector machines with local correlation kernels

Kim, Kwang In and Jung, Keechul and Kim, Jin H. (2002) Face recognition using support vector machines with local correlation kernels. International Journal of Pattern Recognition and Artificial Intelligence, 16 (1). pp. 97-111. ISSN 1793-6381

Full text not available from this repository.

Abstract

This paper presents a real-time face recognition system. For the system to be real time, no external time-consuming feature extraction method is used, rather the gray-level values of the raw pixels that make up the face pattern are fed directly to the recognizer. In order to absorb the resulting high dimensionality of the input space, support vector machines (SVMs), which are known to work well even in high-dimensional space, are used as the face recognizer. Furthermore, a modified form of polynomial kernel (local correlation kernel) is utilized to take account of prior knowledge about facial structures and is used as the alternative feature extractor. Since SVMs were originally developed for two-class classification, their basic scheme is extended for multiface recognition by adopting one-per-class decomposition. In order to make a final classification from several one-per-class SVM outputs, a neural network (NN) is used as the arbitrator. Experiments with ORL database show a recognition rate of 97.9% and speed of 0.22 seconds per face with 40 classes.

Item Type:
Journal Article
Journal or Publication Title:
International Journal of Pattern Recognition and Artificial Intelligence
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1700/1702
Subjects:
?? support vector machines face recognition machine learning image classification feature extractionartificial intelligencesoftwarecomputer vision and pattern recognition ??
ID Code:
69826
Deposited By:
Deposited On:
02 Jul 2014 10:51
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 14:41