Direct numerical simulation of the near-field dynamics of annular gas-liquid two-phase jets

Siamas, George A. and Jiang, Xi and Wrobel, Luiz C. (2009) Direct numerical simulation of the near-field dynamics of annular gas-liquid two-phase jets. Physics of Fluids, 21 (4): 042103. -. ISSN 1070-6631

Full text not available from this repository.

Abstract

Direct numerical simulation has been used to examine the near-field dynamics of annular gas-liquid two-phase jets. Based on an Eulerian approach with mixed fluid treatment, combined with an adapted volume of fluid method and a continuum surface force model, a mathematical formulation for the flow system is presented. The swirl introduced at the jet nozzle exit is based on analytical inflow conditions. Highly accurate numerical methods have been utilized for the solution of the compressible, unsteady, Navier-Stokes equations. Two computational cases of gas-liquid two-phase jets including swirling and nonswirling cases have been performed to investigate the effects of swirl on the flow field. In both cases the flow is more vortical at the downstream locations. The swirling motion enhances both the flow instability resulting in a larger liquid spatial dispersion and the mixing resulting in a more homogeneous flow field with more evenly distributed vorticity at the downstream locations. In the annular nonswirling case, a geometrical recirculation zone adjacent to the jet nozzle exit was observed. It was identified that the swirling motion is responsible for the development of a central recirculation zone, and the geometrical recirculation zone can be overwhelmed by the central recirculation zone leading to the presence of the central recirculation region only in the swirling gas-liquid case. Results from a swirling gas jet simulation were also included to examine the effect of the liquid sheet on the flow physics. The swirling gas jet developed a central recirculation region, but it did not develop a precessing vortex core as the swirling gas-liquid two-phase jet. The results indicate that a precessing vortex core can exist at relatively low swirl numbers in the gas-liquid two-phase flow. It was established that the liquid greatly affects the precession and the swirl number alone is an insufficient criterion for the development of a precessing vortex core.

Item Type:
Journal Article
Journal or Publication Title:
Physics of Fluids
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100/3104
Subjects:
?? confined flowflow instabilityflow simulationjetsmixingnavier-stokes equationsnozzlesnumerical analysistwo-phase flowvorticesswirling inflow conditionslarge-eddy simulationdirect computationflowrecirculationinterfacesystemssheetinstabilityhysteresiscondens ??
ID Code:
51179
Deposited By:
Deposited On:
21 Nov 2011 10:33
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 12:29