Soleimani, M. and Lionheart, W. R. B. and Peyton, A. J. and Ma, Xiandong and Higson, S. R. (2006) A three-dimensional inverse finite-element method applied to experimental eddy-current imaging data. IEEE Transactions on Magnetics, 42 (5). 1560 -1567. ISSN 0018-9464
Abstract
Eddy-current techniques can be used to create electrical conductivity mapping of an object. The eddy-current imaging system in this paper is a magnetic induction tomography (MIT) system. MIT images the electrical conductivity of the target based on impedance measurements from pairs of excitation and detection coils. The inverse problem here is ill-posed and nonlinear. Current state-of-the-art image reconstruction methods in MIT are generally based on linear algorithms. In this paper, a regularized Gauss-Newton scheme has been implemented based on an edge finite-element forward solver and an efficient formula for the Jacobian matrix. Applications of Tikhonov and total variation regularization have been studied. Results are presented from experimental data collected from a newly developed MIT system. The paper also presents further progress in using an MIT system for molten metal flow visualization in continuous casting by applying the proposed algorithm in a real experiment in a continuous casting pilot plant of Corus RD&T, Teesside Technology Centre.