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A Three-Dimensional Inverse Finite-Element Method
Applied to Experimental Eddy-Current Imaging Data
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Eddy-current techniques can be used to create electrical conductivity mapping of an object. The eddy-current imaging system in this
paper is a magnetic induction tomography (MIT) system. MIT images the electrical conductivity of the target based on impedance mea-
surements from pairs of excitation and detection coils. The inverse problem here is ill-posed and nonlinear. Current state-of-the-art image
reconstruction methods in MIT are generally based on linear algorithms. In this paper, a regularized Gauss—Newton scheme has been
implemented based on an edge finite-element forward solver and an efficient formula for the Jacobian matrix. Applications of Tikhonov
and total variation regularization have been studied. Results are presented from experimental data collected from a newly developed
MIT system. The paper also presents further progress in using an MIT system for molten metal flow visualization in continuous casting
by applying the proposed algorithm in a real experiment in a continuous casting pilot plant of Corus RD&T, Teesside Technology Centre.

Index Terms—Edge finite-element method, inverse problems, magnetic induction tomography, total variation regularization.

I. INTRODUCTION

AGNETIC INDUCTION TOMOGRAPHY (MIT) is a
Mnew modality for medical, industrial, and geophysical
imaging [1]-[3]. The problem of MIT image reconstruction is
similar to the inverse eddy-current problem of nondestructive
testing (NDT) [4]-[7]. The measurement data are the mutual
inductances between pairs of coils. The contact-less nature of
this type of tomography makes the technique of interest for non-
invasive and nonintrusive applications. The technique operates
as follows. Passing an alternating current through the excitation
coil(s) produces a primary magnetic field. When this magnetic
field interacts with either a conductive and/or a magnetic object,
a secondary magnetic field is created. The sensing coils can then
detect this secondary field. As the secondary field depends on the
materials present, the measured induced voltage is a nonlinear
function of their electrical properties, e.g., conductivity and
permeability. In comparison with conventional eddy-current
methods, MIT is significant in that it measures the magnetic
coupling, rather than self-inductance, using sensors that are
distributed around the periphery, and therefore is able to image
the distribution of materials inside a region of interest. Image
reconstruction is an inverse problem where the measured volt-
ages are given and the spatial distribution of electromagnetic
properties of the object material need to be found. Linear recon-
struction methods [8], [9] are fast and can be successfully applied
to isolated objects. In general, it is necessary to use nonlinear
reconstruction methods. The most commonly used method for
the image reconstruction in electrical impedance tomography
(EIT) is a regularized Gauss—Newton method. This method has
been studied for magnetostatic permeability tomography using
simulated data in [10]. Each step of such an iterative method is a
linear problem. This paper presents such a method to the inverse
problem of MIT using experimental test data. To be practically
usable, it is very important for an image reconstruction method
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to be tested with experimental data. In this paper, we present the
reconstruction results for laboratory tests as well as experimental
results from a practical test in molten steel flow visualization [8].
Reconstruction of the MIT images requires a forward solver so
that predicted data can be compared with measured data. The
forward problem in MIT is the eddy-current approximation of
Maxwell’s equations, which involves computation of the vector
fields. The edge finite-element method (FEM) has advantages
over nodal FEM for vector field computation in eddy-current
problems [11], and it is a powerful tool for simulation of the for-
ward problem in MIT [12], [13]. We have implemented a flexible
edge-based finite-element eddy-current solver for the forward
problem in MIT using a magnetic vector potential formulation
[13]. An efficient formulation for the Jacobian matrix is used
[14]-[16]. The method requires only two solutions of the forward
problem for each coil pair, first exciting one coil and then the
second.

In order to stabilize the ill-posed inverse problem, regular-
ization techniques are required. A common choice is Tikhonov
regularization that assumes a smooth conductivity distribution
[10]. The Tikhonov regularized Gauss—Newton method is not
ideally suited to problems with a sharp transition in conduc-
tivity between phases. The total variation (TV) functional as-
sumes an important role in the regularization of inverse problem
arising in many disciplines [17], after its initial introduction in
image restoration. The use of such a functional as a regular-
ization penalty term allows the reconstruction of discontinuous
profiles. This is a desirable property where there are sharp edges
with large transitions of the conductivity profile. TV has been
applied to the general form of the elliptic inverse problem [18],
and EIT [19]. In this paper, we further examine the advantage
of TV regularization in separation of high contrast conductivity
objects close to each other with experimental test examples.

This paper is organized as follows. In Section II, we introduce
a newly developed MIT system used for the experimental tests.
In Section III, we describe our edge FEM formulation of the
forward problem. A sensitivity analysis using an efficient for-
mulation will be given in Section IV, where we also present an
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Fig. 1. Diagram of the MIT system used in this study.

example a three-dimensional (3-D) sensitivity map. In Section V,
we explain the nonlinear inverse solver and with commonly
used Tikhonov and with TV regularization. In Section VI, the
experimental results will be presented using these new methods.
The experimental reconstruction presented in Section VI-A
are among the first experimental MIT reconstructions using an
FE-based inversion technique. In Section VI-B, we also present
the molten steel flow images from an MIT experimental system.

II. MIT SYSTEM DESCRIPTION

The MIT technique has been considered in situations where
the target materials of interest are characterized by electrical
conductivity, as is the case of monitoring of the steel flow in
a continuous casting nozzle [8].

Fig. 1 shows a diagram of the main parts of the MIT system.
The hardware consists of a sensor array, waveform generation;
high current buffer for excitation; programmable gain amplifi-
cation and in-phase/quadrature demodulation for detection and
analog to digital conversion. The waveform generator outputs a
5 kHz sinusoidal current. The electronic hardware also allows
the switching of the alternating current signal to each coil for
excitation sequentially, controls the gain selection for the in-
duced voltage amplification, and selects the demodulated signal
components for analog-to-digital conversion. Full details of the
electronic hardware are beyond the scope of this paper, but have
been reported elsewhere [20].

The sensor array contains eight wire wound coils (50 turns,
50 mm diameter). The distance between centers of two oppo-
site coils is 160 mm. All the coils are equally spaced at intervals
around the periphery of the object to be imaged. The region of
interest for the imaging is a cylinder with radius 0.07 m, length
0.10 m centered at (0,0,0), and a relative permeability of 1 (la-
beled C1). Each coil is excited in turn and the induced voltages
are measured in the remaining coils. The real part of the induced
voltage (in-phase with the excitation) has been used for the con-
ductivity reconstruction.

III. FORWARD PROBLEM

The forward problem is a general eddy-current problem and is
solved using an edge FEM method in terms of magnetic vector po-
tential (A) [11], [13]. The forward model has been validated in a
previousstudy[13].GivenE = —iw A andB = V x A, wehave

Vx vV xA)=1Js ey

in nonconductive regions, where ¥ = 1/p. In the conductive
region we have

VX (@¥V xA)+iwcA = Js. )
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Here o is electrical conductivity and w is angular frequency. Let
us denote by L; the nodal scalar basis function. In edge FEM on
a tetrahedral mesh, a vector field is represented using a basis of
vector valued functions IN;; associated with the edge between
nodes ¢ and j

N;; = L;VL,; — L,VL;. 3)

Using edge finite elements

/(VXNV~VxA)dV+/(iwaN-A)dV

Q Qe

=/<N-Js>dv 4

Qe

where N is any linear combination of edge basis functions,
2 is the entire region, (2. is the eddy-current region, and 2.
is the current source region. Here electric vector potential T,
has been used to simulate the current source V x T, = J,
as described [11]. The incomplete Cholesky conjugate gradient
(ICCG) method has been used to solve the linear system of equa-
tions arising from the forward problem [11]. In each iteration
of the inverse problem, we solve the forward problem and the
starting point for ICCG iteration is the latest value of magnetic
vector potential A in previous step.

IV. SENSITIVITY ANALYSIS

The sensitivity formula has been derived earlier from the gen-
eral form of Maxwell’s equations and for the special case of in-
verse eddy-current problem of MIT [14], [16]. A sensitivity for-
mula that reflects the high conductivity changes has been used
for eddy-current NDT (see for example [4]).

The general form of the sensitivity formula when the coil 1
is an excitation coil and coil 2 is a sensing coil, by ignoring
second-order terms is [14]

/(SEl X H2 -ndS
T
= /—iw5/LH1 -Hs + (b0 + iwde)Eq - Eo dV (5)
Q

where the left-hand side is representing sensing and excitation
by surface integral on surface I" and the right-hand side is the
volume integral over the perturbed region €2. H; and E; are the
magnetic and electric fields when coil 1 is excited and Hs and
E, are the magnetic and electric fields when coil 2 is excited.
Similar sensitivity formulas have been discovered in the litera-
ture of numerous electromagnetic sensing methods and justified
with varying degrees of mathematical rigor. In the NDT context,
[21] is an early example. With the A, A formulation and using
edge FEM, the sensitivity to a change in the conductivity of the
conducting region can be calculated using the results of the for-
ward solver, given no change in permeability and permittivity
values in (5). Using the edge element basis functions N, the
potential A inside each element can be expressed as follows:

A =N.A, (6)



1562

Z-Axis

-0.04 0.04

Fig. 2. Sensitivity plot for two opposite coils in 3-D for unit current density in
excitation coil, the sensitivity values for the real part of the induced voltage are
in VmS—1!, dimensions are in m.

where A . are defined along edges. With that, the sensitivity term
for each element as follows:
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Equation (7) gives us sensitivity of the induced voltage pairs V;;
of coils of 7, 7 with respect to an element and 2., is the volume
of element number %k and I; and I; are excitation currents for
the coils. For small conductivity perturbations, the formula pre-
sented in [4] reduces to (7). A similar formula has also been
presented by [6] for the NDT problem.

In the edge FEM software we developed for image recon-
struction, we calculate A in all elements by (6). We can then
use (7) simply for region €2, which includes more than one fi-
nite element. Then the computation of the Jacobian matrix is a
matrix vector multiplication for each measurement. The sensi-
tivity map changes with the background conductivity [22]. With
a conductive background close to the surface, we have higher
eddy currents, and consequentially those areas have higher sen-
sitivity. Sensitivity also depends on the geometrical configu-
ration of the sensing and exciting coils. For example, using a
single frequency and fixed shape of the conductive background,
for high conductivity the higher eddy-current density region is
very small and changes in regions very close to the boundary
are more easily detectable. When the conductivity decreases,
the area of high sensitivity spreads toward the center. Finally,
when the conductivity goes to zero, the more sensitive area is
no longer affected by the conductive background shape and it
is only affected by the geometrical configuration of the sensing
and exciting coils. Fig. 2 shows a 3-D sensitivity map for two op-
posite coils centered at (0, —0.08) and (0, 0.08), the background
is C1 with conductivity 4 Sm~! and frequency is 1 MHz. As it
can be seen in this figure, the sensitivity reduces toward the cen-
tral area as the eddy current is higher near the boundary of the
conductive object.
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Fig. 3. Singular values of the Jacobian matrix (J) for the real and imaginary

part of the measurement voltages on a logarithmic scale (background is C1 with
conductivity 4 Sm~! and frequency 1 MHz).

A. Jacobian Matrix

In the Jacobian matrix, each row is the calculated sensitivity
term for an element for all measurements. Fig. 3 shows the dis-
tribution of the singular values of the real part of the Jacobian
matrix. In a noise- and error-free situation, it is possible to re-
construct an image with up to 28 parameters. In real data and
with measurement errors, according to the discrete Picard cri-
terion, some of the small singular values may not reliably con-
tribute to the image reconstruction. It is worth noticing that some
of these small singular values may represent important and de-
sirable parts of the images which may not be reconstructed due
to noise and error in the measurement.

To illustrate the degree of ill conditioning in the problem,
the singular values are plotted on the log scale (Fig. 3). The
roughly linear decay of the first 28 singular values shows that
the problem is ill-posed. Here the background conductivity is
the cylinder C1 with homogeneous conductivity of 4 Sm~! and
frequency is 1 MHz. In medical MIT, the in-phase component
of the received signal are used to reconstruct conductivity of
the tissue [23]. The quality of imaging depends on the precision
with which the real part can be measured. In Fig. 3, one can see
that using the imaginary part of receiving signal (with this par-
ticular conductivity and frequency) the inverse problem is actu-
ally better posed than using the real part. In practical terms, mea-
suring the imaginary part (detecting a very small signal due to
the conductive object, in-phase with a very large primary signal)
is a very difficult task for medical MIT applications.

Fig. 4 shows the singular values of the Jacobian for back-
ground C1 with conductivity 5.8 x 107 Sm~! and frequency
5 kHz. This figure shows that using real part or imaginary part
to reconstruct conductivity is more ill-posed that the problem of
Fig. 3, but the ill-posedness of the problem using real data and
imaginary data is similar.

V. INVERSE PROBLEM

A regularized Gauss—Newton method is used to solve the in-
verse problem. We denote by V,,, the measurement data, and
by F' the forward operator, which takes the vector of degree of
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Fig. 4. Singular values of the Jacobian matrix (J) for the real and imaginary
part of the measurement voltages on a logarithmic base (background is C1 with
conductivity 5.8 X 107 Sm—* and frequency 5 kHz).

freedom in the conductivity o and calculates the corresponding
voltages. The inverse solver is an optimization algorithm that
finds a o to minimize a suitable error functional. Reformulation
of the inverse problem to include prior information is known as
regularization and it can be expressed as a minimization of the
functional

(o) =l Vin = F(o) |I* +a*G(0) ®

where a?G(a) is a penalty term. The Jacobian matrix J is a dis-
cretization of F’(o). The regularization parameter « controls
the tradeoff between fitting the data and reducing the penalty
term. For a well-chosen (G, f will have a critical point which is
the minimum, at this minimum V f = 0. A typical example of a
discrete form of a penalty term is G(o’) = ||Ro||? for a matrix
R approximating a differential operator. A more detailed study
of the iterative Gauss—Newton step to solve nonlinear ill-posed
problem can be seen in [24]. As an iterative reconstruction al-
gorithm, we start our regularized Gauss—Newton method with
an initial conductivity distribution 6. The forward problem is
solved and the predicted voltages are compared with the calcu-
lated voltages from the forward model. The conductivity is then
updated. The process is repeated until the predicted voltages
from the finite-element method agree with the calculated volt-
ages from the finite-element model to measurement precision.
In the nonlinear steps, the Jacobian matrix is also updated in
each step. Solving this minimization problem by Gauss—Newton
leads to linear steps, each of which is the regularized step of the
linearized problem (for the simple form of G above)

Sonsr = (373, + >RTR) ™ (3T (V,,

n

—F(0,))
- o’RTRea,) (9

where n is the iteration step. For n = 1, this is a linear recon-
struction algorithm.

A. Tikhonov Regularization

A natural assumption is that the conductivity is fairly smooth,
which can be expressed by demanding that G(a) = ||Réc||?
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Fig. 5. Singular value distribution for J7J + o2R*R for cylinder C1 for
different regularization parameters (different values for «?).

is not too large, where the regularization matrix R is a dif-
ference operator between neighboring pixels. This results in
(generalized) Tikhonov regularization, which penalizes extreme
variations in conductivity removing the instability in the recon-
struction at the cost of producing artificially smooth images. A
common choice for R is a discrete approximation to the Laplace
operator, in which case the penalty term is a discrete approxi-
mation to

GTikh(U):/|V20(x)|2dV (10)
Q

in

where 2;,, is the region of interest for the image.

The effect of Tikhonov regularization can be seen in Fig. 5,
where the singular values cluster when the Tikhonov regulariza-
tion matrix is applied to enforce a smoothness assumption to the
conductivity distribution.

B. Total Variation Regularization

Although Tikhonov type regularization provides a good
method to reconstruct smooth parameters both in terms of
contrast and shape, it fails to reconstruct the sharp edges and
absolute values for the high contrast case. TV regularization is
a more suitable method for both sharp edges and high contrast.
Using TV regularization to reconstruct the sharp edges has been
discussed in [19] for EIT. The recovery of sharp edges in MIT
using TV regularization is similar to the EIT problem. In other
words, the TV functional is used to encourage blocky images
as a regularized solution. The TV functional of a continuum o

Grvlo)= [ [Vat@)av. (a1
Q

in

Let the area of each facet ¢+ between two tetrahedra be ¢; for
i =1,2,...,1. The kth row of the matrix S € RT*P (here I
is number of facets and P is number of tetrahedral elements)
is chosen to be S, = [0...01... —10...0], where 1 and
—1 occur in the columns corresponding to the tetrahedra with
common facets k. Rows of Sy, are then weighted with the sur-

face area of g, of the facet k, and we define Rty = STQS,
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Fig. 6. Reconstruction of one metal bar presented at different cross sections.
The heights are = = —0.02 for top left, z = —0.01 top right, = = 0.01 bottom

left, z = 0.02 bottom right. Dimensions are in m.
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Fig. 7. Cross sections of reconstruction of three metal objects. Heights as
Fig. 6.

where Q is a diagonal matrix with Qxr = gx. Using the 1-norm
||[Rrvo||1 gives an approximation to the total variation function
of the distribution o [25].

VI. RESULTS AND DISCUSSION
A. Experimental Tests

Preliminary results using simulation data have been presented
earlier. In [26], the simulation results for high contrast conduc-
tivity and in [27], the simulation results for low contrast conduc-
tivity (medical MIT) have been presented. In this paper, we are
more concerned with validating the method with experimental
data. Electrically conductive objects were tested using data from
the MIT system. Test objects—rods and bars—used were 30 cm
long, which we considered long compared to the 5 cm diameter
of the detector element. These tests were arranged to represent
typical liquid metal flow profiles such as central and multiple
streams. Fig. 6 shows one object representing a single stream,
where the image is well defined when a 9 mm diameter copper
rod is placed at the center. Figs. 7 and 8 show the image re-
sults with multiple objects being tested representing multiple
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Fig. 9. Cross sections of reconstruction of a rectangular object in center.
Heights as Fig. 6.

flow streams. In Fig. 7, three copper rods with 19 mm diameter
were placed upright at the corners of an equilateral triangle. As
shown in Fig. 8, three big copper rods (19 mm in diameter) and
one small copper (12.5 mm in diameter) are clearly visible. An
object with rectangular cross section was also tested, namely
a rectangular box with a cross-sectional size of approximately
80 mm x 50 mm. Fig. 9 shows the reconstructed rectangular ob-
jectusing TV regularization. This showed better preservation of
the sharp edges of the rectangular object than Tikhonov regular-
ization. For smooth shape single objects or for objects far from
each other, the TV and Tikhonov regularization produced sim-
ilar images. Fig. 10 shows reconstruction of three copper bars
close to each other (30 mm apart), using TV and Tikhonov reg-
ularization. In TV regularization, the separation between bars is
improved compared to Tikhonov regularization. The number of
iterations used for the inverse problem in these examples is less
than six; further iterations were found not to improve the image
quality. We have as yet found no fool-proof way to choose the
regularization parameter for the nonlinear inverse problem. In
this study we choose the regularization parameter using ad hoc
methods, and this must always be treated with caution. The best
one can hope for is to find a good parameter choice for a par-
ticular experimental setup and range of target objects. Further
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Fig. 10. Cross sections of reconstruction of three metallic objects close to each
other using TV regularization and Tikhonov regularization. Heights as Fig. 6.
(a) Tikhonov regularization. (b) Total variation regularization.

studies are required to find an automatic choice of regulariza-
tion parameter in this nonlinear inverse problem. The regular-
ization parameter was chosen 10™® for Tikhonov regularization
and 10™° for TV regularization in all iterations.

In the MIT problem, the effect of high conductivity regions
on measurements saturates as the conductivity increases. This is
evident even in the modest conductivity contrasts in medical ap-
plications as discussed in [10]. For this reason reconstruction of
the absolute values of the high contrast conductivities (quantita-
tive image reconstruction) is a difficult, or perhaps an impossible,
task both numerically and experimentally. Nonlinear reconstruc-
tion algorithms will typically result in a conductivity that fits the
measurements to within the measurement or forward modeling
error, but the conductivity contrast will be underestimated for
large contrast objects. In our present work, we show the advan-
tage of nonlinear image reconstruction in improving the quanti-
tative estimation in that for high contrast objects the contrast in
the reconstructed image is greater than for a linear step. How-
ever, a more important advantage we claim is an improvement
in object localization. Taking the example of Fig. 8, the plot of
Fig. 11 shows the reduction in the cost functional (8) for each it-
eration. Fig. 12 shows a cross section of the image at each itera-
tion. In each iteration the separation between objects improved,
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Fig. 11. Reduction in cost function with iteration steps.

and the contrast between the background and reconstructed con-
ductivity of the rods increases up to six iterations at which satura-
tion sets in and no further improvement is observed. Our explana-
tion for this improvement in separation at each iteration is that in
a nonlinear reconstruction algorithm, by recalculating the Jaco-
bian matrix and forward model we account better for the interfer-
ence of the secondary field between highly conductive objects.
This is in contrast to the case of a single linear step that only con-
siders the sensitivity at a fixed (homogeneous) background. We
expect that the interference between highly conductive objects
will increase with increasing the excitation frequency, and also
the saturation will occur in lower conductivity values at higher
frequency. The saturation and interference between near by ob-
jects is also a function of how close they are to the excitation
coil—nearer to excitation coils, higher field strengths might be
expected to produce a greater interference effect.

The edge FEM forward solver and the image reconstruction
software have been written in Matlab. The overall number of
tetrahedral elements in forward model was 86757 and the re-
gion of interest (Cylinder C1), which was used in inverse so-
lution, included 3058 tetrahedral elements. The computer had
a 1.7 GHz Intel Pentium M processor and 512 MB of RAM.
The computational time for each nonlinear iteration of the in-
verse problem (consisting mainly of the forward solver, Jaco-
bian calculation and inversion) was 26 min. The major parts of
the computational time includes solving two linear system of
equations: one is for the forward problem involving a large but
sparse matrix and the other one involves solution of a smaller
but full matrix arising from the inverse problem.

B. Flow Visualization in Continuous Casting

Continuous casting is a process by which molten steel is
formed into semi-finished billets, blooms, and slabs. Liquid
steel from the basic oxygen steel-making or electric arc furnace
process and subsequent secondary steel-making, is transferred
fromaladle, viaarefractory shroud, into the tundish. The tundish
acts as a reservoir, both for liquid steel delivery and removal of
oxide inclusions. A stopper rod or sliding gate is used to control
the steel flow rate into the mould through a submerged entry
nozzle (SEN). The SEN distributes the steel within the mould,
shrouds the liquid steel from the surrounding environment,
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Fig. 12. Reconstruction of four metallic objects in iterations 1, 3, and 6. Note
that they are displayed on different scales to show the improvement in object
localization. The maximum conductivity values in the reconstructions are 2.25 X
102 for the first iteration, 4.18 x 102 third iteration and 3.65 x 10° sixth iteration.
(a) Step 1. (b) Step 3. (c) Step 6.

and reduces air entrainment, thus preventing reoxidation and
maintaining steel cleanliness. A photograph of real molten steel
flow in continuous casting can be seen in Fig. 13.
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Fig. 13. Example of steel flow through a glass tube during a hot experiment.
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Fig. 14. Reconstruction of real steel flow, time is in seconds and X and Y here
are in mm, for each time step the image shows the Z = 0 level of 3-D image.

The hot casting trials were undertaken at Corus RD&T,
Teesside Technology Centre. The sensor array was placed
around a transparent quartz glass tube within a standard slab
caster SEN and connected to the MIT instrument through long
thermally shielded cables. Molten steel was supplied from a
4-ton nominal capacity electric arc furnace via a stoppered
ladle to a tundish and then passed to a mock casting mould via
the glass tube to enable the steel submerged pouring to be sim-
ulated. The outputs are arranged in a data matrix such that the
rows represent the time sequence, i.e., image frame index, and
the columns the coil-pair measurements. A selection of results
is shown in Fig. 14. The images are shown in sequence from
top to bottom indicating the pouring of molten steel at different
time instants. The results were consistent with the real pouring
arrangement in that pouring was initially positioned in the
center and then positioned off-center. Consequentially, the hot
trial results demonstrate the success of using electromagnetic
sensing technique to monitor and visualize the real molten steel
flow through a pouring nozzle.

VII. CONCLUSION

In this paper, we described a general reconstruction method
for 3-D magnetic induction tomography. Application of total
variation regularization improves the separation between ob-
jects close to each other and recovery of sharp edges. The en-
couraging results from pilot plant trials suggest that the pro-
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posed MIT reconstruction method may be useful for monitoring
and visualization of real molten steel flow through a pouring
nozzle, although the stability of the hardware is an issue if the
system is used for longer times in a hot environment. The pro-
posed technique in this paper can be used in off-line image re-
construction in MIT, as the computational time can be very high.
Further studies are required to improve the speed of the pro-
posed technique for online monitoring. In particular improving
the speed of the forward solver (for example by using algebraic
multigrid solvers), use of parallel processing, and improvement
in speed of the linear solvers for the inverse problem in each
iteration step. Quantitative image reconstruction for high con-
trast conductivity applications, while desirable for some appli-
cations, is hard to achieve even with total variation regular-
ization but reasonable qualitative results are possible. Further
work is needed to both improve the accuracy of the experi-
mental system and modeling in order to improve reconstruction
accuracy.
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