Holocene sediment dynamics in an upland temperate lake catchment : climatic and land-use impacts.

Hatfield, Robert G. and Maher, Barbara A. (2009) Holocene sediment dynamics in an upland temperate lake catchment : climatic and land-use impacts. Holocene, 19 (3). pp. 427-438. ISSN 1477-0911

[thumbnail of Hatfield_&_Maher_Sed_dynamics_The_Holocene_2008.pdf]
Preview
PDF (Hatfield_&_Maher_Sed_dynamics_The_Holocene_2008.pdf)
Hatfield_&_Maher_Sed_dynamics_The_Holocene_2008.pdf

Download (904kB)

Abstract

Accelerated erosion and transport of fine sediment from upland temperate catchments can reflect increased erosivity and/or erodibility, due in turn to climatic and/or human forcing. Identification of sediment fluxes and sources over Holocene timescales can both enable understanding of the relative impacts of these forcings, and provide perspective on recent sediment fluxes. Here we present a ~ 5,500 year record of sediment fluxes and sources from Lake Bassenthwaite utilising magnetic measurements and fuzzy clustering, coupled with independent pollen and archaeological records, to identify the timing and impact of catchment disturbance. This record shows that recent sediment flux increases (i.e., within the last 150 years) are unprecedented in scale throughout the mid-late Holocene and appear to be in response to specific human changes occurring within the catchment. Earlier episodes of human activity, from the mid-Holocene onwards, show no link with increased lake sediment fluxes, indicating either limited catchment impact and/or ‘buffering’ through within-catchment sediment storage. Increasingly intensive land use and reduction of sediment storage through revetment construction on a key inflow, Newlands Beck, have resulted in 3 x increases in lake sediment flux. These data may be significant for other upland temperate areas, as increasing land use pressures and reduced sediment storage capacity may not only increase contemporary sediment flux, but increase sensitivity to predicted increases in rainfall and storminess as a result of global warming.

Item Type:
Journal Article
Journal or Publication Title:
Holocene
Additional Information:
“The final, definitive version of this article has been published in the Journal, The Holocene, 19 (3), 2009, © SAGE Publications Ltd, 2009 by SAGE Publications Ltd at The Holocene page: http://hol.sagepub.com/ on SAGE Journals Online: http://online.sagepub.com/
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1900/1911
Subjects:
?? environmental magnetismmagnetic susceptibilitysediment tracingpollenclimate changeholocenesediment storagepalaeontologyecologyglobal and planetary changeearth-surface processesg geography (general) ??
ID Code:
27052
Deposited On:
15 Sep 2009 09:25
Refereed?:
Yes
Published?:
Published
Last Modified:
13 Nov 2024 01:05