Salama, Ahmed and Hardy, John and Yessuf, Abdurohman and Chen, Jianbin and Ni, Ming and Huang, Cheng (2025) Injectable Hydrogel Technologies for Bone Disease Treatment. ACS Applied Bio Materials, 8 (4). pp. 2691-2715. ISSN 2576-6422
Full text not available from this repository.Abstract
Injectable hydrogels represent a highly promising approach for localized drug delivery systems (DDSs) in the management of bone-related conditions such as osteoporosis, osteonecrosis, osteoarthritis, osteomyelitis, and osteosarcoma. Their appeal lies in their biocompatibility, adjustable mechanical properties, and capacity to respond to external stimuli, including pH, temperature, light, redox potential, ionic strength, and enzymatic activity. These features enable enhanced targeted delivery of bioactive agents. This mini-review evaluates the synthesis of injectable hydrogels as well as recent advancements for treating a range of bone disorders, focusing on their mechanisms as localized and sustained DDSs for delivering drugs, nanoparticles, growth factors, and cells (e.g., stem cells). Moreover, it highlights their clinical studies for bone disease treatment. Additionally, it emphasizes the potential synergy between injectable hydrogels and hydrogel-based point-of-care technologies, which are anticipated to play a pivotal role in the future of bone disease therapies. Injectable hydrogels have the potential to transform bone disease treatment by facilitating precise, sustained, and minimally invasive therapeutic delivery. Nevertheless, significant challenges, including long-term biocompatibility, scalability, reproducibility, and precise regulation of drug release kinetics, must be addressed to unlock their clinical potential fully. Addressing these challenges will not only advance bone disease therapy but also open new avenues in regenerative medicine and personalized healthcare.