Addison, Harry and Frohmaier, Chris and Maguire, Kate and Nichol, Robert C and Hook, Isobel and Smartt, Stephen J (2025) A Young Supernova Selection Pipeline For The LSST Era. Monthly Notices of the Royal Astronomical Society. ISSN 0035-8711
A_young_supernova_selection_pipeline_for_the_LSST_era.pdf - Accepted Version
Available under License Creative Commons Attribution.
Download (753kB)
Abstract
Early-time spectroscopy of supernovae (SNe), acquired within days of explosion, yields crucial insights into their outermost ejecta layers, facilitating the study of their environments, progenitor systems, and explosion mechanisms. Recent efforts in early discovery and follow-up of SNe have shown the potential insights that can be gained from early-time spectra. Surveys such as the Time-Domain Extragalactic Survey (TiDES), conducted with the 4-meter Multi-Object Spectroscopic Telescope (4MOST), will provide spectroscopic follow-up of transients discovered by the Legacy Survey of Space and Time (LSST). Current simulations indicate that early-time spectroscopic studies conducted with TiDES data will be limited by the current SN selection criteria. To enhance early-time SN spectroscopic studies from TiDES-like surveys, we propose a set of selection criteria focusing on young SNe (YSNe), which we define as SNe prior to −10 days before peak brightness. Utilising the Zwicky Transient Facility transient alerts, we developed criteria to select YSNe while minimising the sample’s contamination rate to 23percnt. The developed criteria were applied to LSST simulations, yielding a sample of 694 Deep Drilling Field survey SNe and 56260 Wide Fast Deep survey SNe for follow-up. We demonstrate that our criteria enables the selection of SNe at early-times, enhancing future early-time spectroscopic SN studies from TiDES-like surveys. Finally, we investigated 4MOST-like observing strategies to increase the sample of spectroscopically observed YSNe. We propose that a 4MOST-like observing strategy that follows LSST with a delay of 3 days is optimal for a TiDES-like SN survey in terms of the number of classifiable spectra obtained, while a 1 day delay is most optimal for enhancing the early-time science in conjunction with our YSN selection criteria.