Clustering by Minimum Cut Hyperplanes

Hofmeyr, David (2017) Clustering by Minimum Cut Hyperplanes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (8). pp. 1547-1560. ISSN 0162-8828

Full text not available from this repository.

Abstract

Minimum normalised graph cuts are highly effective ways of partitioning unlabeled data, having been made popular by the success of spectral clustering. This work presents a novel method for learning hyperplane separators which minimise this graph cut objective, when data are embedded in Euclidean space. The optimisation problem associated with the proposed method can be formulated as a sequence of univariate subproblems, in which the optimal hyperplane orthogonal to a given vector is determined. These subproblems can be solved in log-linear time, by exploiting the trivial factorisation of the exponential function. Experimentation suggests that the empirical runtime of the overall algorithm is also log-linear in the number of data. Asymptotic properties of the minimum cut hyperplane, both for a finite sample, and for an increasing sample assumed to arise from an underlying probability distribution are discussed. In the finite sample case the minimum cut hyperplane converges to the maximum margin hyperplane as the scaling parameter is reduced to zero. Applying the proposed methodology, both for fixed scaling, and the large margin asymptotes, is shown to produce high quality clustering models in comparison with state-of-the-art clustering algorithms in experiments using a large collection of benchmark datasets.

Item Type:
Journal Article
Journal or Publication Title:
IEEE Transactions on Pattern Analysis and Machine Intelligence
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1700/1702
Subjects:
?? artificial intelligencecomputational theory and mathematicssoftwareapplied mathematicscomputer vision and pattern recognition ??
ID Code:
231593
Deposited By:
Deposited On:
04 Sep 2025 15:50
Refereed?:
Yes
Published?:
Published
Last Modified:
19 Sep 2025 20:40