Jarvis, Hannah L and Nagy, Philip and Reeves, Neil D (2025) A Faster Walking Speed Is Important for Improving Biomechanical Function and Walking Performance in Stroke Survivors. Journal of Applied Biomechanics, 41 (1). pp. 70-86. ISSN 1065-8483
Manuscript_YoungStroke_WalkingBiomechanics_Clean.pdf - Accepted Version
Available under License Creative Commons Attribution.
Download (211kB)
Abstract
This study compares joint kinematics and kinetics of young stroke survivors who walk <0.79 m/s (slow) or >0.80 m/s (fast) with reference to a healthy able-bodied group and provides clinical recommendations for guiding the gait rehabilitation of stroke survivors. Twenty-two young stroke survivors (18–55 y) were recruited from 6 hospital sites in the United Kingdom. Stroke participants were classified by walking speed as slow (<0.79) or fast (>0.80 m/s), and joint kinematics and kinetics at the pelvis, hip, knee, and ankle were measured during walking on level ground at self-selected speed. Ten walking biomechanical parameters correlated to walking speed (ρ ≥ .550). Stroke survivors in the slow group walked with significantly greater range of sagittal plane pelvic motion (P < .009), reduced range of hip adduction and abduction (P < .011), and smaller peak hip extension angle (P < .011) and hip flexion moment (P < .029) for the paretic limb. For the nonparetic limb, a significantly reduced hip flexion moment (P < .040) was observed compared with the fast group and control. We are the first to report how biomechanical function during walking is compromised in young stroke survivors classified by walking speed as slow (<0.79 m/s) or fast (>0.80 m/s) and propose that these biomechanical parameters be used to inform rehabilitation programs to improve walking for stroke survivors.