Machine Learning-Driven Optimization of Micro-Textured Surfaces for Enhanced Tribological Performance : A Comparative Analysis of Predictive Models

Ge, Zhenghui and Hu, Qifan and Wang, Rui and Fei, Haolin and Zhu, Yongwei and Wang, Ziwei (2024) Machine Learning-Driven Optimization of Micro-Textured Surfaces for Enhanced Tribological Performance : A Comparative Analysis of Predictive Models. Coatings, 14 (12): 1539. ISSN 2079-6412

Full text not available from this repository.

Abstract

Micro-textured surfaces show promise in improving tribological properties, but predicting their performance remains challenging due to complex relationships between surface features and frictional behavior. This study evaluates five algorithms—linear regression, decision tree, gradient boosting, support vector machine, and neural network—for their ability to predict load-carrying capacity and friction force based on texture parameters including depth, side length, surface ratio, and shape. The neural network model demonstrated superior performance, achieving the lowest MAE (24.01) and highest R-squared value (0.99) for friction force prediction. The results highlight the potential of machine learning techniques to enhance the understanding and prediction of friction-reducing micro-textures, contributing to the development of more efficient and durable tribological systems in industrial applications.

Item Type:
Journal Article
Journal or Publication Title:
Coatings
ID Code:
226498
Deposited By:
Deposited On:
18 Dec 2024 10:00
Refereed?:
Yes
Published?:
Published
Last Modified:
19 Dec 2024 01:25