A Photonic Nanojet as Tunable and Polarization-Sensitive Optical Tweezers

Karabchevsky, Alina (2018) A Photonic Nanojet as Tunable and Polarization-Sensitive Optical Tweezers. Annalen der Physik, 530 (9): 1800129. ISSN 0003-3804

Full text not available from this repository.

Abstract

The ability to manipulate small objects with focused laser beams has opened a venue for investigating dynamical phenomena relevant to both fundamental and applied sciences. However, manipulating nano-sized objects requires subwavelength field localization, provided by auxiliary nano- and microstructures. Particularly, dielectric microparticles can be used to confine light to an intense beam with a subwavelength waist, called a photonic nanojet (PNJ), which can provide sufficient field gradients for trapping nano-objects. Herein, the scheme for wavelength-tunable and nanoscale-precise optical trapping is elaborated, and the possibility of lateral nanoparticle movement using the PNJ's side lobes is shown for the first time. In addition, the possibility of subwavelength positioning using polarization switching is shown. The estimated stability with respect to Brownian motion is higher compared to conventional optical trapping schemes.

Item Type:
Journal Article
Journal or Publication Title:
Annalen der Physik
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100
Subjects:
?? physics and astronomy(all) ??
ID Code:
224882
Deposited By:
Deposited On:
18 Oct 2024 14:40
Refereed?:
Yes
Published?:
Published
Last Modified:
18 Oct 2024 14:40