Disentangled Feature Learning Network and a Comprehensive Benchmark for Vehicle Re-Identification

Bai, Yan and Liu, Jun and Lou, Yihang and Wang, Ce and Duan, Ling-Yu (2022) Disentangled Feature Learning Network and a Comprehensive Benchmark for Vehicle Re-Identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44 (10). pp. 6841-6871. ISSN 0162-8828

Full text not available from this repository.

Abstract

Vehicle Re-Identification (ReID) is of great significance for public security and intelligent transportation. Large and comprehensive datasets are crucial for the development of vehicle ReID in model training and evaluation. However, existing datasets in this field have limitations in many aspects, including the constrained capture conditions, limited variation of vehicle appearances, and small scale of training and test set, etc. Hence, a new, large, and challenging benchmark for vehicle ReID is urgently needed. In this paper, we propose a large vehicle ReID dataset, called VERI-Wild 2.0, containing 825,042 images. It is captured using a city-scale surveillance camera system, consisting of 274 cameras covering a very large area over 200 $km^2$ . Specifically, the samples in our dataset present very rich appearance diversities thanks to the long time span collecting settings, unconstrained capturing viewpoints, various illumination conditions, diversified background environments, and different weather conditions. Furthermore, to facilitate more practical benchmarking, we define a challenging and large test set containing about 400K vehicle images that do not have any camera overlap with the training set. VERI-Wild 2.0 is expected to be able to facilitate the design, adaptation, development, and evaluation of different types of learning models for vehicle ReID. Besides, we also design a new method for vehicle ReID. We observe that orientation is a crucial factor for feature matching in vehicle ReID. To match vehicle pairs captured from similar orientations, the learned features are expected to capture specific detailed differential information for discriminating the visually similar yet different vehicles. In contrast, features are desired to capture the orientation invariant common information when matching samples captured from different orientations. Thus a novel disentangled feature learning network (DFNet) is proposed. It explicitly considers the orientation information for vehicle ReID, and concurrently learns the orientation specific and orientation common features that thus can be adaptively exploited via an adaptive matching scheme when dealing with matching pairs from similar or different orientations. The comprehensive experimental results show the effectiveness of our proposed method.

Item Type:
Journal Article
Journal or Publication Title:
IEEE Transactions on Pattern Analysis and Machine Intelligence
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1700/1702
Subjects:
?? artificial intelligencecomputational theory and mathematicssoftwareapplied mathematicscomputer vision and pattern recognition ??
ID Code:
223145
Deposited By:
Deposited On:
16 Aug 2024 10:15
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Aug 2024 10:15