Newn, Joshua and Quesada, Sophia and Hou, Baosheng James and Khan, Anam Ahmad and Weidner, Florian and Gellersen, Hans (2023) Exploring Eye Expressions for Enhancing EOG-Based Interaction. In: Human-Computer Interaction – INTERACT 2023 : 19th IFIP TC13 International Conference, York, UK, August 28 – September 1, 2023, Proceedings, Part IV. Springer, GBR, pp. 68-79. ISBN 9783031422928
INTERACT23_EOG_EyeExpressions.pdf - Accepted Version
Restricted to Repository staff only until 26 August 2025.
Available under License Creative Commons Attribution-NonCommercial.
Download (1MB)
Abstract
This paper explores the classification of eye expressions for EOG-based interaction using JINS MEME, an off-the-shelf eye-tracking device. Previous studies have demonstrated the potential for using electrooculography (EOG) for hands-free human-computer interaction using eye movements (directional, smooth pursuit) and eye expressions (blinking, winking). We collected a comprehensive set of 14 eye gestures to explore how well both types of eye gestures be classified together in a machine learning model. Using a Random Forest classifier trained on our collected data using 15 engineered features, we obtained an overall classification performance of 0.77 (AUC). Our results show that we can reliably classify eye expressions, enhancing the range of available eye gestures for hands-free interaction. With continued development and refinement in EOG-based technology, our findings have long-term implications for improving the usability of the technology and for individuals who require a richer vocabulary of eye gestures to interact hands-free.