Bjurefors, Fredrik and Karaliopoulos, Merkourios and Rohner, Christian and Smith, Paul and Theodoropoulos, George and Gunningberg, Per (2014) Resilience and opportunistic forwarding : Beyond average value analysis. Computer Communications, 48. pp. 111-120. ISSN 0140-3664
Full text not available from this repository.Abstract
Opportunistic networks are systems with highly distributed operation, relying on the altruistic cooperation of highly heterogeneous, and not always software and hardware-compatible, user nodes. Moreover, the absence of central coordination and control makes them vulnerable to malicious attacks. In this paper, we study the resilience of popular forwarding protocols to a representative set of challenges to their normal operation. These include jamming locally disturbing message transfer between nodes, hardware/software failures and incompatibility among nodes rendering contact opportunities useless, and free-riding phenomena. We first formulate and promote the metric envelope concept as a tool for assessing the resilience of opportunistic forwarding schemes. Metric envelopes depart from the standard practice of average value analysis and explicitly account for the differentiated challenge impact due to node heterogeneity (device capabilities, mobility) and attackers’ intelligence. We then propose heuristics to generate worst- and best-case challenge realization scenarios and approximate the lower and upper bounds of the metric envelopes. Finally, we demonstrate the methodology in assessing the resilience of three popular forwarding protocols in the presence of the three challenges, and under a comprehensive range of mobility patterns. The metric envelope approach provides better insights into the level of protection path diversity and message replication provide against different challenges, and enables more informed choices in opportunistic forwarding when network resilience becomes important.