Investigating the responses of Brassica oilseed crops to real-world ozone levels

Roberts, Hattie (2023) Investigating the responses of Brassica oilseed crops to real-world ozone levels. PhD thesis, UNSPECIFIED.

[thumbnail of 2023RobertsPhD]
Text (2023RobertsPhD)
2023RobertsPhD.pdf - Published Version
Restricted to Repository staff only until 6 July 2024.
Available under License Creative Commons Attribution.

Download (4MB)

Abstract

Oilseed rape (hereafter OSR) contributes a fifth of calories consumed by humans from oilseeds annually. The composition and quality of their lipid-rich seeds is tightly regulated to prevent introducing toxic compounds to the food chain. As these increase in response to environmental stresses such as the phytotoxic pollutant tropospheric ozone, understanding the effects of ozone on, and potential tolerance mechanisms in, this lucrative crop is necessary to maintain crop quality and yield. Firstly, I investigated the impact of ‘real-world’ ozone levels (20 - 110 ppbv over 12 days to 5 months) on the seed and oil yield of one shorter-lived spring OSR cultivar and one longer-lived winter cultivar to realistic ozone levels over a growing season. High ozone levels caused differences in seed yield and quality losses, but the winter cultivar’s yield losses were more substantial. I postulated that winter OSR diverted more photosynthate to antioxidants, which protect metabolic processes and prevent damage caused by ozone. I then focused on ascorbic acid, which directly reacts with ozone and stress-inducing products within the leaf and is associated with ozone tolerance. Despite higher concentrations of total ascorbic acid in the leaf, short-term ozone exposure decreased winter OSR physiology and productivity, and cumulative ozone uptake was a key factor in ozone tolerance. I then questioned whether canola-grade cultivars of advanced pedigree and therefore high gas exchange and low antioxidant levels were more sensitive to ozone. Surprisingly, a canola-grade cultivar with the lowest gas exchange and highest antioxidant activity (compared to two non-canola-grade cultivars) was ozone tolerant. I also developed a relative oxidative stress index incoroporating biochemical responses, which adequately predicted ozone tolerance in the four Brassica oilseeds, which may be applied to identify and exploit Brassica ozone tolerance.

Item Type:
Thesis (PhD)
Uncontrolled Keywords:
Data Sharing Template/yes
Subjects:
?? YES - EXTERNALLY FUNDEDYES ??
ID Code:
197963
Deposited By:
Deposited On:
07 Jul 2023 15:05
Refereed?:
No
Published?:
Published
Last Modified:
12 Sep 2023 00:58