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Abstract 

Oilseed rape (hereafter OSR) contributes a fifth of calories consumed by humans from 

oilseeds annually. The composition and quality of their lipid-rich seeds is tightly 

regulated to prevent introducing toxic compounds to the food chain. As these increase 

in response to environmental stresses such as the phytotoxic pollutant tropospheric 

ozone, understanding the effects of ozone on, and potential tolerance mechanisms in, 

this lucrative crop is necessary to maintain crop quality and yield. Firstly, I investigated 

the impact of ‘real-world’ ozone levels (20 - 110 ppbv over 12 days to 5 months) on the 

seed and oil yield of one shorter-lived spring OSR cultivar and one longer-lived winter 

cultivar to realistic ozone levels over a growing season. High ozone levels caused 

differences in seed yield and quality losses, but the winter cultivar’s yield losses were 

more substantial. I postulated that winter OSR diverted more photosynthate to 

antioxidants, which protect metabolic processes and prevent damage caused by ozone. 

I then focused on ascorbic acid, which directly reacts with ozone and stress-inducing 

products within the leaf and is associated with ozone tolerance. Despite higher 

concentrations of total ascorbic acid in the leaf, short-term ozone exposure decreased 

winter OSR physiology and productivity, and cumulative ozone uptake was a key factor 

in ozone tolerance. I then questioned whether canola-grade cultivars of advanced 

pedigree and therefore high gas exchange and low antioxidant levels were more 

sensitive to ozone. Surprisingly, a canola-grade cultivar with the lowest gas exchange 

and highest antioxidant activity (compared to two non-canola-grade cultivars) was 

ozone tolerant. I also developed a relative oxidative stress index incoroporating 

biochemical responses, which adequately predicted ozone tolerance in the four Brassica 

oilseeds, which may be applied to identify and exploit Brassica ozone tolerance.
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Figure 8.2. Two 1-m3 sealed chambers used to fumigate plants ~20 ppbv and 100 ppb 

ozone for 12 days. OSR leaves on the basal rosette were tagged: the 2nd , 4th , and 

6th leaves numbering from the base of the plant were selected for measurements. 

Environmental parameters: relative humidity (RH), temperature, and light 

monitored throughout experiment ±STD= standard deviation. ......................... 128 
Figure 8.3. Heat maps showing Pearson’s correlation between biochemical, 

physiological, and morphological data in response to cumulative ozone uptake.

 ............................................................................................................................ 130 
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1. Introduction 

1.1 Oilseed rape: an economically important crop 

In 2021, the global yield of Brassica oilseeds reached 68 million metric tonnes, 

contributing 11% of global oilseed yields, making it second only to soybean which 

yielded 384 million tonnes (USDA, 2021). However, despite taking up a quarter of the 

growing area, oilseed rape (hereafter OSR) oil produces around the same calories as 

soybean as its seed oil content is at least double that of soya: ≥41% compared to soya 

seed’s 20% oil (AHDB, 2023). Crushed and pressed OSR is used primarily to produce 

edible oil, contributing 6.0 ⨉ 1011 kcal to the food industry in 2021, which represents 

~4% of average global calorific needs annually (D'Odorico et al., 2014; Berners-Lee et 

al., 2018). Once the edible oil has been extracted, the remainder of the seed (39 million 

tonnes) is used as seed meal for livestock, the products of which account for a further 

9.9 ⨉ 109 kcal (Orlovius, 2003). The precise distribution of OSR production remains 

unclear as the term ‘rapeseed’ is ascribed to several progenitor and dominant hybrid 

Brassica species (USDA, 2023), but it is virtually ubiquitous across the Northern 

Hemisphere crop-producing regions. 

There are six major agricultural Brassica species. The relationships between 

them are demonstrated in The Triangle of U (Figure 1.1, adapted from Xue et al., 2020). 

Figure 1.1. Adapted Triangle of U applied to key Brassica oilseeds, with cultivation uses, largest 

production locations, and annual calorific production (as pressed oil). Calorific value refers edible 

oil production in five highest-producing regions (China, Canada, EU, India, Japan). Calorific data 

from Shekhawat et al. (2012) and USDA (2023). Large symbols show three cultivars that have 

been bred to canola-grade tolerance in OSR (B. napus in yellow, B. rapa in purple/blue, and B. 

juncea in green). Colours codes indicated here are used throughout this thesis. 
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Progenitor species (B. rapa L., B. oleracea L., B. nigra L.,) co-occur as archaeophytes 

across Europe, Asia, and Africa, and as neophytes in the Americas and Australasia. The 

three species naturally hybridised multiple times, producing three dominant amphiploid 

hybrids (B. caratina L., B. juncea L., B. napus L.) (Allender and King, 2010). 

Per capita consumption of Brassica oilseeds is highest in the European Union, 

where B. rapa and B. napus are the dominant cultivated species. Both species have been 

cultivated in both a winter- and spring-sown form, with their quality tightly regulated. 

For example, OSR lines are selected during breeding programmes based on high oleic 

acid levels, a desirable omega-9 fatty acid, and low erucic acid, an undesirable 

compound which is known to cause myo-cardiotoxicity at high levels (Knutsen et al., 

2016). These cultivars are referred to as High Oleic Low Linolenic - HOLL or ‘00’ (Fu 

and Gugel, 2009; Lu et al., 2019). The earliest advanced cultivar development 

programmes in the 1940’s exploited both B. napus and B. rapa, but B. napus became 

favoured in the 1960s due to its superior herbicide tolerance (Canola Council, 2017). B. 

napus breeding intensified from then with a focus on exploiting valuable traits such as 

high oil content, low proportion of non-nutritive compounds, and high productivity and 

yield (Fu and Gugel, 2010). The name ‘canola’ was coined and trademarked in the late 

1970s as an acronym of Canadian Oil Low Acid (Canola Council, 2017). The name 

could initially only be ascribed to varieties that contained <2% erucic acid and produced 

feed with less than 30 μl aliphatic Glucosinolates per g of dry seed (Raymer, 2002). 

However, as the quality of all edible B. napus currently traded and processed for human 

consumption is so tightly regulated as to inevitably meet these criteria (as in EU), the 

names canola and oilseed rape are now considered interchangeable (Wittkop et al., 

2009).  

India and China consume one-third of total global yields of Brassica oilseeds, 

with China consuming twice that of India (USDA, 2023). Brassica oilseed oil comprises 

over a quarter of total oilseed yields in India, totalling 8 million tonnes (USDA, 2021), 

with B. juncea accounting for 75-80% of Indian rapeseed production and consumption. 

The remainder comprises a mix of B. rapa, Eruca vesicaria, and B. napus (Shekhawat 

et al., 2012). China cultivates B. napus and B. rapa, with production of B. napus 

increasing by a third since 2006 to 14 million tonnes in 2021 and now contributing 

~85% of Brassica oilseed production in the country (USDA, 2021). Despite this, China 

relies on 2.2 million tonnes imports annually, bringing their total consumption to 15 

million tonnes per year (USDA, 2021). B. carinata and B. nigra seeds are also cultivated 

in Northern Africa, Europe, and the Middle East but the seeds contain high levels of 

non-nutritive compounds and erucic acid levels <40%, so cannot be used in large 

volumes in food and animal feed (De Zoysa et al., 2021). Hence, they are primarily used 

as a spice and as medicine (Nicácio et al., 2021). However, those very same qualities 

are desirable for industrial uses and both species are now being considered as promising 

biofuel feedstocks (Roslinsky et al., 2021).  

This thesis primarily focuses on B. napus (hereafter OSR), which accounts for 

~90% of total Brassica oilseed yields globally and which has been extensively 

selectively bred on four continents, primarily to increase yield and human edible oil 

content and quality (Wittkop et al., 2009). OSR breeding in Europe has resulted in two 
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seasonal cultivars: spring-sown (considered annual) cultivars and winter-sown 

(biennial) cultivars (AHBD, 2023; Gulden et al., 2008). In Europe, winter varieties are 

sown in mid-August to early September, and harvested in July to August, whereas 

spring varieties are sown in late March to early April, and harvested in late August to 

September (AHDB, 2020). Therefore, spring varieties have a shorter life cycle, and less 

time in which to be productive, resulting in more efficient conversion of sequestered 

carbon to oilseed (Felzer et al., 2007). Previous studies have suggested that varieties of 

crops with shorter life cycles are more susceptible to oxidative damage due to abiotic 

stress, such as exposure to elevated tropospheric ozone (Felzer et al., 2007; Emberson 

et al., 2018). This may be caused by plants with shorter life cycles failing to deploy or 

utilise protective mechanisms over their growing season when compared to slow-

growing counterparts. Given the very low economic return for OSR (Hu et al., 2017), it 

is uncertain whether the winter crops with a longer life cycle would remain 

economically viable if yields or quality declined. 

1.2 Tropospheric ozone  

Ozone (O3) is a key air pollutant in the lowest atmospheric region, the troposphere, and 

the third most important greenhouse gas in terms of climate forcing, at an estimated 

0.28-0.43 W m-2 since pre-Industrial times (Zeng et al., 2008). Ozone is formed through 

a series of non-linear chemical reactions involving natural and anthropogenic nitrogen 

oxides (NOx) and volatile organic compounds (VOC) in the presence of UV light 

(Hauglustaine and Brasseur, 2001; Cooper et al., 2014), as shown in Figure 1.2. Despite 

declines in anthropogenic emissions of these precursor compounds from industrial and 

urban areas in Northern Europe and North America, ozone concentrations have not 

decreased proportionally (Ziemke et al., 2019). Average annual background 

concentrations have instead generally increased by ~15% in many areas of the Northern 

Hemisphere since 1900 and are projected to increase by a further 5-10% by 2100 from 

30 ppb to 35 ppb (Archibald et al., 2020).  

Increased ozone levels have in part been driven by increasing Northern 

Hemisphere temperatures, which increase biogenic volatile organic compounds 

(BVOC) from vegetation, and increase rates of the reactions leading to ozone formation 

(Coates et al., 2016). Moreover, stratospheric ozone depletion increases UV radiative 

forcing in the troposphere and increases the rate of the initiation steps in the reaction, 

thereby increasing tropospheric ozone formation still further (Hegglin and Shepherd, 

2009). This has resulted in the total tropospheric burden reaching ~5000 Tg yr-1 

(Archibald et al., 2020), although there were slight declines of ozone (by 6.5 Tg yr-1) in 

summer 2020 due to COVID-19 lockdowns inducing substantial decreases in urban and 

industrial NOx of ~15% (Miyazaki et al., 2021). A significant proportion, thought to be 

around 10% or ~450 Tg yr-1, of tropospheric ozone comes from stratospheric exchange, 

as shown in Figure 1.2 (Archibald et al., 2020). Ozone levels drop sharply by 

approxiamtely a third overnight largely due to a) dry deposition onto reactive surfaces 

(e.g., vegetation, soils) and b) the night time fall in precursor compounds such as NO 

(Fujita et al., 2003; Hu et al., 2021; Masiol et al., 2019). This creates a characteristic 
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diurnal profile wherein ozone is high during the day and low at night (Petetin et al., 

2016). Moreover, ozone levels also have a seasonal cycle due to most importnatly 

increased temperaure and light, alongside BVOC emissions during the peak Northern 

Hemispheric growth season, i.e. between April and September (Parrish et al., 2013; 

2020). 

Ozone is relatively long-lived compared to other tropospheric pollutants with an 

average lifetime  of ~20 days, approximately 10-fold longerthan that of sulphur dioxide 

(SO2) and several orders of magnitude greater than that of NO2 (Lelieveld et al., 1997; 

Fowler et al., 2008). This means that ozone may be transported many hundreds of miles 

from precursor sources, such as urban and industrial areas. Moreover, ozone is higher 

in rural areas due to (a) higher VOC emissions and (b) the NO titration effect, whereby 

extremely high concentrations of NO over cities, leads to chemical loss of ozone. Ozone 

is thereby often considered a rural air pollutant, with rural concentrations being a third 

or more higher than urban concentrations. For example, maximum ozone concentrations 

in northern UK cities were 70 ppb while rural areas reached 100 ppb in 2005 (Jenkin, 

2008; Sicard, 2021). Once ozone is transported to rural areas, its lifetime declines to 2 

days as enhanced rates of dry deposition occur (Fowler et al., 2008). Tropospheric 

ozone’s lifetime allow transport between countries and even continents (Dueñas et al., 

2004; Derwent et al., 2015; Han et al., 2018). Ozone annual cycles and distribution are 

largely driven by meteorology (sunlight, wind speed and direction, temperature) (Hu et 

al., 2021) and determine whether crops are exposed to medium-high (50-100 ppb) 

concentrations over weeks or months (chronic ozone exposure), or very high (up to 200 

ppb) over hours or days (acute ozone exposure) (Fiala et al., 2003; Lin et al., 2020). All 
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Figure 1.2. Ozone formation and occurrence adapted from Fowler et al., (2008). Ozone burden (Tg yr-1) 

from Archibald et al., (2020) Miyazaki et al., (2021). 
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experiments in this thesis use a range of ‘real-world’ levels of ozone, from low 

concentrations (~20-30 ppb) representative of mid-high latitude European background 

levels, up to 110 ppbv, representative of typical maximum summertime levels in areas 

of long-term measurement, such as southern Europe, Asia and North America (Pay et 

al., 2019; Boleti et al., 2020).  

 

1.3 Ozone phytotoxicity 

Ozone is a well-known phytotoxin, as it is a powerful oxidant that directly damges leaf 

tissue. Ozone also generates highly oxidising reactive oxygen species (ROS), which 

disrupt metabolic pathways, damage cell membranes, and ultimately result in decreased 

photosynthetic rate, loss of stomatal control, accelerated senescence, and declines in 

plant biomass (Agathokleous et al., 2020). Elevated ozone concentrations (e.g. >30 

ppbv) are considered as an abiotic stress, as they are a sub-optimal environmental 

condition which decreases vegetation abundance and diversity (e.g., Mills et al., 2018a), 

and decrease the productivity of ozone-sensitive species, significantly decreasing yields 

(Zhang et al., 2022). 

1.3.1 Ozone in plant tissues, ROS formation, and oxidative stress 

Ozone mainly enters plant tissue via the stomata and rapidly dissolves and oxidises into 

the apoplastic space, due to the apoplast’s aqueous state which contains solubilised low-

weight molecular compounds, water and vitamins (Qi et al., 2017). The apoplast 

consists of intercellular space, cell wall, and xylem, and is considered the primary 

interface of intracellular inference (Farvardin et al., 2020). The oxidation reactions 

triggered by ozone generate ROS species including superoxide (O-
2•), singlet oxygen 

(1O2) and the hydroxyl radical (OH•), which in turn oxidise the low-weight compounds 

in the apoplast (Halliwell, 2006). Superoxide is dominantly produced in these apoplastic 

oxidation reactions but is relatively unstable with a half-life of 1 µs, compared to singlet 

oxygen at 3 µs (Halliwell, 2006). Superoxide either is quenched by defensive 

compounds (section 1.4) or undergoes spontaneous dismutation to hydrogen peroxide 

(H2O2), which is the most stable and therefore the longest-lived ROS at 1 ms (Sies and 

Chance, 1970; Phua et al., 2021). For this reason, H2O2 is used as a marker of oxidative 

stress (Shulaev and Oliver, 2006) although H2O2 can also diffuse through phospholipid 

membranes via aquaporins into cytosol and organelles, where it can either act as a 

signal, or further damage membranes if not reduced to water by biochemical defences 

(Bienert and Chaumont, 2014; Smirnoff and Arnaud, 2019). Cellular homeostasis is 

ultimately disrupted through damage of metabolic and photosynthetic apparatus such as 

thylakoid membranes, open calcium ion and potassium ion channels, and disrupt key 

signalling pathways such as ABA signalling to induce stomatal closure (Mills et al., 

2009; McAdam et al., 2017).  

ROS are also formed under non-stress conditions as a by-product of aerobic 

metabolism via pathways involving electron transport chains e.g., photosynthesis and 

respiration, which are prone to ‘electron leakage’ (Hajiboland, 2014). Oxygen, which 
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is present in high levels in plant tissues, gains these electrons and is therefore reduced 

to super oxygen, which has a higher energy state and is more reactive (Demidchik, 

2015). Ozone, oxygen and ROS are therefore also abundant within organelles such as 

mitochondria, chloroplasts, and peroxisomes. Other abiotic stresses, e.g., high 

temperatures, similarly increase ROS formation, via increased rates of 

respiration/photosynthesis (Nievola et al., 2017). If ROS concentrations exceed and 

overwhelm defence mechanisms, the plant is under ‘oxidative stress’ (Phua et al., 2021). 

When plants undergo oxidative stress, ROS oxidise phospholipid membranes, thus 

causing lipid peroxidation which generates malondialdehyde (MDA), which is therefore 

commonly used as a marker of oxidative damage (Vaultier and Jolivet, 2015). High 

levels of ROS (in particular H2O2 which is a multi-faceted molecular signal at low 

levels) also trigger the upregulation of senescence-associated genes (SAG) initiating 

biochemical processes such as programmed cell death (PCD), a tightly orchestrated 

pathway which terminates cells and tissue (De Pinto et al., 2012). 

1.3.2 Ozone decreases photosynthesis  

While senescence processes largely contribute to photosynthetic declines, ozone-

induced ROS, such as H2O2, also downregulate photosynthesis-associated genes 

(PAGs), and lead to catabolism of photosynthetic components such as chloroplasts. 

Ozone has well-known detrimental effects on crop photosynthetic rate: high ROS levels 

damage both the light-dependent and light-independent photosynthetic pathways in 

ozone-sensitive species, such as soybean (Rai and Agrawal, 2012). These include 

decreased Rubisco synthesis through damage to mRNA, and enzymes such as Rubisco 

activase and ATP synthase (Tammam et al., 2019). Proteins such as the oxygen-

evolving subunit of Photosystem II are also significantly damaged, meaning that the 

light-dependent reaction is a key site for ozone damage (Bohler et al., 2007). Decreased 

carbon assimilation ultimately leads to decreased non-structural carbohydrate synthesis, 

therefore decreasing carbon storage and allocation to reproductive organs (Bohler et al., 

2007; Tammam et al., 2019). This is reflected in decreased leaf area and reproductive 

output.  

1.3.3 Ozone impairs stomatal functioning 

Stomata are the primary entry point for ozone uptake; therefore, it is important to 

measure stomatal conductance (openness and density of stomata) and the effects of 

ozone on stomatal conductance. However, ozone level, magnitude and duration dictate 

the degree and type of stomatal damage that may occur. For example, chronic 

tropospheric ozone exposure generally decreases stomatal conductance (Ainsworth et 

al., 2012), and many mechanisms have been ascribed to this physiological phenomenon. 

For example, it is thought that a decreased photosynthetic rate and increased 

mitochondrial respiration rate (Lombardozzi et al., 2012) cause an increase in internal 

carbon dioxide concentration and therefore decrease stomatal conductance (Gandin et 

al., 2021). This causes an uncoupling between photosynthetic rate and stomatal 

conductance (Lombardozzi et al., 2012). Such an uncoupling of stomatal conductance 
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from environmental parameters results in higher transpiration rates, decreases intrinsic 

water use efficiency (iWUE), and may lead to further oxidative and physiological 

damage from stresses such as drought (McAinsh et al., 2002; Paoletti and Grulke, 2010).

  

While secondary stomatal impacts are well-documented, direct damage of 

stomata have been given little attention. However, high ozone levels of ~200 ppb 

directly decrease stomatal conductance through influx of ROS through guard cells, 

leading to indirect stimulation of potassium ion channels, leading to an an efflux of 

potassium ions, and ultimately stomatal closure (Vahisalu et al., 2010). Another 

proposed theory is that ABA precursors are directly oxidised by ROS, which increases 

localised relative ABA production, inducing stomatal closure (McAdam et al., 2017). 

However, signalling pathways involved in stomatal control, e.g., calcium-based 

signalling via changes in the calcium homeostasis of guard cells, can also be altered or 

interrupted by high ozone levels (>70 ppb) (McAinsh et al., 2002; Short et al., 2012). 

Such changes prevent full stomatal closure in response to other environmental (light, 

temperature) and biochemical stimuli (phytohormones such as ABA) (Ainsworth et al., 

2012). This may cause “sluggish” stomatal responses, wherein stomata respond slowly 

to biochemical and environmental stimuli, further causing declines in productivity such 

as biomass accumulation.  

1.3.4 Foliar injury and accelerated senescence  

Injury metrics based on early disease marking indices are commonly adopted to 

describe ozone-induced damage (Paoletti et al., 2022). For example, tissue necrosis, 

resulting in foliar necrotic lesions, manifests as rust-like flecks on leaves or bronzing 

between leaf veins, as observed in B. juncea after 26 days’ exposure to 100 ppbv ozone 

(Figure 1.3a). The proportion of leaf area covered by such lesions can be estimated and 

scored as a percentage with a lower foliar injury score effectively signifying relative 

ozone tolerance (De Temmerman et al., 2002; Paoletti et al., 2022). This type of injury 

is caused by a hypersensitive response, wherein a sudden increase in H2O2 levels 

(‘oxidative burst’) genetically upregulates biochemicals akin to a local pathogenic 

response, meaning that affected cells initiate rapid cell death. This highly localised 

response causes the characteristically irregular and isolated foliar lesions (Grulke and 

Heath, 2020). However, some crop species, such as B. napus, do not to present this 

classic ozone symptom under more moderate ozone levels (<110 ppb) (Ollerenshaw et 

al., 1999). Therefore, the only visible injury symptom may be increased foliar 
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senescence with non-specific yellowing 

or browning of the leaf, as shown in 

Figure 1.3b (usually measured non-

destructively with a chlorophyll content 

meter e.g., soil plant analysis 

development meter or ‘SPAD’) or foliar 

abscission (i.e., leaf number) in an 

acropetal gradient.  

Tropospheric ozone damage in 

crops is most reliably apparent as a PCD-

induced accelerated senescence 

response (Grulke and Heath, 2020). 

Senescence is a tightly regulated process 

that is initiated by key signalling 

molecules integrated to developmental 

and age-dependent pathways including 

ROS such as H2O2 (Dat et al., 2003; 

Bieker et al., 2012; Zentgraf et al., 

2022). H2O2 upregulates senescence-

associated genes (SAGs), such as SAG2 

and SAG12 which metabolises enzymes 

involved in macromolecular catabolism 

and cycling, such as chloroplast 

breakdown (Grbić and Bleecker, 1995; 

Miller et al., 1999; Kusaba et al., 2013; 

Li et al., 2013). H2O2 is also known to 

initiate transcription of auxin 

phytohormones (e.g., IAA), which in 

turn stimulates biosynthesis of ethylene, 

a phytohormone well-known to induce 

many senescence and abscission 

processes in crops such as mungbean 

(Vigna radiata L.) (Song et al., 2007). 

This shift in primary metabolic profile 

and transport leads to chlorophyll 

degradation, hence, declines in 

photosynthesis. The effects of leaf 

ageing and ozone are considered 

synergistic, as ozone exposure increases 

the endogenous ROS pool beyond that 

associated with natural ageing, as well as 

directly oxidising photosynthetic 

components. While many senescence-

associated pathways have been 

Figure 1.3. a) Necrotic lesions on B. juncea leaf 

under 100 ppbv ozone after 26 days. b) Spring B. 

napus ozone damage is manifested as 

accelerated senesnence at ~100 ppbv compared 

to ambient (20 ppbv). c) Long-term exposure to 

110 ppbv ozone accelerates growth stagest in 

spring-sown OSR. 
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identified, there are still challenges in describing the full biochemical senescence 

mechanism in plants due to its complexity and genetic regulation (Nooden, 2003; Kim 

et al., 2016). 

During senescence, older leaves reallocate nutrients to younger leaves, therefore 

providing metabolic compensation, and thus increasing plant fitness when crops are 

under stress (Gan and Amasino, 1997; Guiboileau et al., 2010). Therefore, growers may 

adjust nitrogen application in-field to attempt to mitigate senescence acceleration, as 

increased nitrogen stimulates chlorophyll synthesis in crops under ozone exposure and 

may be misdiagnosed as nutrient deficiency (Pandey et al., 2018). However, whole-

plant senescence is also accelerated, leading to earlier transitions between growth stages 

(Figure 1.3c). Such changes in phenology advance maturity and harvest dates, and 

therefore modify agricultural calendars. In the case of Brassica leafy crops and oilseeds, 

market value may decline due to appearance (i.e., loss of chlorophyll) or lack of seed 

filling (Teixeira et al., 2011).  Moreover, as nutrient use efficiency declines, input costs 

for growers are increased, which is at odds with global efforts to improve crop resource 

efficiencies and land management (Fuhrer and Booker, 2003).  

 

1.4 Biochemical defence responses to ozone 

Plants have evolved a suite of constituent, systemically and locally induced biochemical 

compounds synthesised in response to stress. These secondary metabolic compounds 

include antioxidants, that ultimately prevent oxidative stress and damage (Pisoschi and 

Pop, 2015). Key compounds and enzymes associated with ozone exposure and defence 

are described in this section and presented in Figure 1.4. Optimal defence theory 

suggests that the shift in the secondary metabolic profile ensures that tissues closely 

associated with plant fitness are defended at the constitutive level, i.e., antioxidants are 

produced throughout the plant, and expendable tissues, such as older leaves, are more 

associated with oxidative damage (Strauss et al., 2004).  

1.4.1 Antioxidant function and purpose  

Antioxidants may have multiple roles, such as inhibition of a range of ROS species, 

e.g., ascorbate species (Xiao et al., 2021), or may be upregulated in response to specific 

stimuli in localised areas, such as via H2O2 signalling (Zhanassova et al., 2021). 

Therefore, antioxidants tend to co-occur in high concentrations at sites of high ROS 

concentrations: mitochondria, chloroplasts, peroxisomes, and the apoplast. 

Antioxidants prevent or delay cell damage by inhibiting ROS-induced oxidation 

reactions and by directly or indirectly quenching ROS (Larson, 1988). Apoplastic 

antioxidants are considered as the primary detoxicants under high ozone uptake 

(Castagna et al., 2005). There are two key apoplastic antioxidant groups: enzymatic and 

non-enzymatic antioxidants. Non-enzymatic antioxidants are generally simple low-

molecular weight compounds which react directly with ROS, or regenerate enzymatic 

antioxidants. Enzymatic compounds are larger, structurally complex and consist of 
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protein subunits, and directly quench a range of ROS including H2O2 (Dumanović et 

al., 2021).   

1.4.2 Non-enzymatic antioxidants and ozone tolerance  

Non-enzymatic antioxidants that have been repeatedly associated with biochemical 

tolerance to moderate-high Northern Hemispheric levels (<110 ppb ozone treatments) 

and chronic ozone treatments in primary research studies are ascorbic acid (AsA) 

(Conklin and Barth, 2004), and glutathione (GSH) (Noctor et al., 1998). These 

compounds are key electron donors in the ascorbate-glutathione cycle, which is 

considered the dominant pathway of apoplastic antioxidant defence (Sharma and Davis, 

1997). Due to the extensive literature on the response of AsA and its redox forms in a 

range of crop species, AsA can be used as a marker for ozone tolerance.  

Ascorbic acid (AsA), a monosaccharide micronutrient (vitamin C), is the most 

frequently cited and longest-established antioxidant associated with ozone responses in 

higher plants such as white stonecrop Sedum album L. and wheat (Triticum durum L. 

and T. aestivum L.) (e.g., Castillo and Greppin, 1988; de la Torre, 2008; Fatima et al., 

2019). It is a water-soluble molecule which rapidly changes redox state depending on 

environmental conditions, such as pH and temperature (Smirnoff, 2000; Dai et al., 

2020). Ozone uptake increases AsA levels (Castillo and Greppin, 1988; Chen and 

Gallie, 2005), as AsA directly quenches ROS such as ozone and hydroxyl radicals, but 

mainly singlet oxygen (as shown in Figure 1.4), which has been observed in vivo in leaf 

extracts (Luwe et al., 1993) in vitro (Chou and Khan, 1983) and reproduced in silico in 

model simulations (Plöchl et al., 2000).  

AsA is also a redox buffer for enzymatic scavenging of hydrogen peroxide 

(H2O2) in the glutathione-ascorbate cycle (Wu et al., 2017): Ascorbate peroxidase 

(APX, an enzymatic antioxidant, described in Section 1.4.3) uses AsA as an electron 

donor, and reduces H2O2 to water, as shown in Figure 1.4; Smirnoff, 2000; Ishikawa 

and Shigeoka, 2008). Moreover, AsA is one of the most ubiquitous antioxidants and 

makes up a significant proportion of the apoplastic antioxidant pool in Brassicaceae 

(Das and Roychoudhury, 2014; Raseetha et al., 2013). AsA is a key modulator between 

growth transitions and senescence, acting as a nuclear signal to induce flowering and 

an antagonistic signal in senescence onset: for example, declines in AsA levels initiate 

senescence-associated genetic upregulation. AsA-deficient Arabidopsis thaliana 

mutants show accelerated senescence (Conklin and Barth, 2004; Kiddle et al., 2003; 

Pavet et al., 2005; Smirnoff, 2000).  

Similarly to AsA, Glutathione (GSH) is a water-soluble redox buffer that 

directly quenches ROS species such as superoxide (Wefers and Sies, 1983). It is also 

involved in the glutathione-ascorbate cycle, where it is used as an electron donor to 

regenerate AsA, as shown in Figure 1.4 (Noctor et al., 1998; Pasqualini et al., 2001). In 

turn, GSH is regenerated by reduced nicotinamide adenine dinucleotide phosphate 

(NADPH)-dependent glutathione reductase, which is a key enzyme in the ascorbate-

glutathione cycle (Noctor et al., 1998). It is considered a transportable form of reduced 

sulphur, which has been identified to initiate signal transduction in response to changes 
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in redox status (Alscher, 1989; Kumar et al., 2010). While its precise role in signal 

transduction has not been fully elucidated, ~80 ppb ozone exposure increased GSH 

levels in an ozone-tolerant rice cultivar, which maintained yield relative to another more 

ozone-sensitive cultivar (Wang et al., 2013).  

Ozone exposure also increases the concentrations of a range of other foliar 

antioxidants, such as phenols (anthocyanins, flavanols) (Boublin et al., 2022; Pellegrini 

et al., 2015) and tocopherols (Guo et al., 2009; Wedow et al., 2021). However, these 

antioxidants did not appear to confer morphological or physiological tolerance (e.g., 

chlorophyll content was lost, where measured). Moreover, these studies often fumigate 

with more than 200 ppbv, which doesn’t represent realistic Northern Hemisphere levels 

where Brassica crops majorly are grown. Plant responses under such extreme 

conditions may therefore not be representative of crop responses under lower (real-

world) ozone levels. 

1.4.3 Enzymatic antioxidants and ozone tolerance 

Enzymatic antioxidants, which include polypeptide subunits (and metal ions), are 

synthesised in response to stress by genetic transcript accumulation (Camp et al., 1994; 

Raven, 2003). Multiple gene families associated with enzymatic antioxidant synthesis 

are known to be triggered by phytohormones and secondary metabolites such as 

ethylene (Agrawal et al., 2003) and ABA (Zhou and Guo, 2009).  

The enzyme superoxide dismutase (SOD; E.C. 1.15. 1.1), considered the 

primary enzymatic antioxidant in ROS-antioxidant pathway, has long been associated 

with ROS quenching and therefore with abiotic stress tolerance. As shown in Figure 

1.4, SOD initiates a series of reactions by reducing superoxide to H2O2, which in turn 

is quenched to water and oxygen by other enzymatic antioxidants (including 

peroxidases (APX) and catalase (CAT)) (Sharma et al., 2012; Gill et al., 2015). Around 

20 SOD genes have been identified in Brassica species and are known to be upregulated 

in response to salinity, cold, waterlogging, and drought in Brassica napus, B. juncea, 

and B. rapa (Verma et al., 2019; Su et al., 2021). Importantly, increased SOD activity 

has been observed to reduce ozone-induced programmed cell death (PCD) (Lee & 

Bennett, 1982) and overexpression of a SOD gene improved salinity tolerance in 

Arabidopsis (Wang et al., 2004).  

Ascorbate peroxidase (APX; E.C. 1.11. 1.11) is a Class I haem-containing 

peroxidase that directly quenches H2O2 into water (Jones et al., 1998). It is considered 

to be the antioxidant that functions downstream from SOD and is a major component 

of the apoplastic antioxidant pathway and ascorbate-glutathione cycle (Figure 1.4). 

APX also co-occurs with SOD in sites of high ROS: the apoplast, cytosol, mitochondria, 

and chloroplasts (Caverzan et al., 2019). APX is synthesised via multiple signal 

pathways, such as ethylene increasing caffeic acid synthesis, which in turn increases 

APX transcript accumulation, thus increasing APX synthesis and activities, and 

therefore decreasing H2O2 concentration, under abiotic stress such as exposure to ozone 

(Torsethaugen et al., 1997; Castagna and Ranieri, 2009). APX has long been associated 

with ozone responses in higher plants (Mehlhorn et al., 1987): chronic levels (60 ppbv) 
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over 56 days have been shown to stimulate APX activities in the apoplast in ozone-

resistant white clover (Trifolium repens L.) (Nali et al., 2005). Moreover, three APX 

genes have been associated with APX upregulation in response to abiotic stress in B. 

juncea, while five have been identified in B. rapa, and B. juncea (Ma et al., 2022; Verma 

et al., 2021), suggesting APX it may be suitable for selecting for allelic variation to 

develop ozone-tolerant crops (Pandey et al., 2017).  

While other peroxidases (POX; E.C. 1.11. 1.x) and catalase (CAT; EC 1.11.1.6) 

also catalyse H2O2 to water, APX and SOD are more closely associated with increased 

activity and antioxidant capacity under ozone levels representative of real-world 

conditions, as shown in response to <110 ppbv ozone (SOD and APX) in rice (Sarkar 

et al., 2015), and <110 ppbv in wheat (APX) (Wang et al., 2014). Furthermore, POX 

and CAT are present at comparatively lower apoplastic concentrations. CAT is mainly 

found in peroxisomes, and is less effective at quenching ROS than APX, as it has a 

lower affinity for H2O2 (Mizuno et al., 1998). Moreover, POX is localised mainly to 

vacuoles (Sharma and Davis, 1997), are a diverse superfamily (which include APX), 

and therefore not considered a specific enough marker for ozone tolerance due to its 

comparative complexity and diversity. Hence, neither CAT nor POX were a focus of 

this thesis. 

O3 O−
2. H2O2 H2OO3

SOD

APX
1O2

AsA

Ozone exposure Ozone Uptake in apoplastic space

Phytohormones
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PCDHomeostasis
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Lipid peroxidation
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Figure 1.4. Simplified schematic of ozone uptake, ROS generation and scavenging from three key 

antioxidants AsA (green), SOD, APX (blue). Ozone enters the leaf via stomata, where it rapidly dissolves 

into the apoploastic space and oxidises to for reactive oxygen species. Key ROS are sinlget oxygen (1O2) 

and superoxide (O-
2•), which are quenched by ascorbic acid (AsA) and superoxide dismutase (SOD). 

Hydrogen peroxide is in turn quenched by ascorbate peroxidase, which is regenerated by AsA.  
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1.5 Tropospheric ozone decreases Brassica oilseed yield and quality 

B. napus is described as ‘moderately sensitive’ to ozone, with critical levels based on 

AOT40 being half the value of that for soya in a meta-analysis (Mills et al., 2006). 

Despite this, the European agricultural sector rarely view chronic ozone exposure as a 

major risk factor in OSR cultivation due to OSR yeild variation being attributed to other 

stresses and the likely misidentification of ozone damage (Mills et al., 2006). 

Furthermore, the vegetative stage (growth stage/GS15, i.e., 5 leaves fully unfolded) and 

early reproductive stages (GS50, i.e., inflorescence emergence) are considered the most 

ozone-sensitive (as in Table 1.1.) (AHBD, 2019) and these coincide with the period of 

highest ozone concentrations in the Northern Hemisphere (i.e., where OSR is majorly 

grown). 

 

Table 1.1. Oilseed rape growth stage development index adapted from AHDB, 2023. Blue 

shading presents growth stages which are considered most sensitive to ozone exposure. Red 

shading denotes growth stages exposed to elevated ozone in each study chapter. 

Growth stage (GS) Description 
Growth stages 
ozone-exposed in 
thesis chapters:  

00-09 Germination and emergence  3 4 5 

00-19 Leaf development  3 4 5 

20-29 Side-shoot formation  3 4 5 

30-39 Stem elongation/extension  3 4 5 

40-49 Not applicable in OSR 3 4 5 

50-59 
Inflorescence/flower-bud 
emergence  

3 4 5 

60-69 Flowering 3 4 5 

70-79 Pod/seed development 3 4 5 

80-89 Pod/seed ripening 3 4 5 

90-99 Senescence/harvest 3 4 5 

 

Fewer than six studies have investigated the effects of real-world ozone 

exposure on Brassica oilseed since 1990. In spring B. napus, thousand seed weight 

(TSW), considered a key indicator of yield, declined between 15 and 30% in OSR 

exposed to ozone over three months (Adaros et al., 1991; Bosac et al., 1998; De Bock 

et al., 2011). Total seed mass per plant also declined by ~25% (Vandermeiren et al., 

2012). However, reproductive site losses (declines in seed, pod, and flower spike or 

‘racemes’ number) were inconsistent between studies, with some cultivars losing a third 

of reproductive sites (Bosac et al., 1998; De Bock et al., 2011), and some gaining 

reproductive sites by 10% (Bosac et al., 1994). Brassica oilseed quality also generally 

declined in all studies where measured. For example, total oil content declined by a 

third under exposures of ~70 ppbv over a growing season (De Bock et al., 2011), which 

represents a risk of oil content falling to below the threshold for marketing as canola-

grade. Fatty acid composition has also been reported to change, leading to a general 

decline in seed quality. For example, in one study, the fatty acid family including erucic 

acid (omega-9 fatty acid, denoted 22:1) increased by 5% in B. rapa seeds exposed to 70 

ppbv over a growing season, increasing levels to above the limits for safe consumption. 
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Hence, this would require further processing to remove such compounds, incurring 

substantial economic penalties for growers (Tripathi and Agrawal, 2012). 

Glucosinolates, an equally undesirable compound to erucic acid, also increased by 

~30% following exposure to 63 ppbv ozone over three months (Vandermeiren et al., 

2009).  

However, considerable knowledge gaps remain. Whether antioxidant responses 

convey physiological tolerance and whether such parameters could provide a 

quantitative measure of ozone-tolerance has not been established. It is also important to 

compare how both yield and quality parameters are affected between two seasonal 

varieties (spring and winter sown OSR), and between the different Brassica oilseed 

species. Changes in yield and quality would decrease economic returns of this crop for 

growers, and improved understanding would enable informed cultivar choice and 

desirable trait selection in future scenarios.  

 

1.6 Quantifying ozone exposure/uptake  

Several metrics and models for quantifying ozone exposure, the ozone concentration 

that the plant endures over a season, and uptake, the ozone flux inside the leaves via 

stomata, have been developed or proposed since 1979. Following this, the Convention 

on Long Range Transboundary Air Pollution (CLRTAP) was established to develop 

international policies from research that clearly demonstrated the damaging effects of 

air pollution on vegetation.  

Initially, metrics merely expressed an amount of ozone to which a plant had 

been exposed. The first were simply the sum of the mean 7-, 12-, or 24-hourly 

concentrations over an entire growing season (M7, M12, M24) - estimates of the 

average concentration of ozone the plant was in contact with (Fuhrer et al., 1997). 

However, in 1995, the European LRTAP proposed a standardised measurement: 

AOT40, which measures the accumulated exposure to ozone concentrations above 40 

ppbv during daylight hours over a 3-month period (Fuhrer et al., 1978; Chapter and 

Full, 2000; Pleijel et al., 1991). This was adopted because vegetation biomass losses of 

5% or greater showed a very strong relationship to 3-month AOT40 in multiple studies 

in wheat; 40 ppb was also considered substantially removed from background 

concentrations to provide a policy relevant target for emission reductions (Fuhrer and 

Acherman, 1994; Musselman et al., 1994; Finnan et al., 1996). AOT40 marked an 

important step forward, as it considered that seasonal exposures to the same mean 

concentration, but with a greater frequency of high concentrations, had a greater impact 

on vegetation (Critical Loads Advisory Group, 1996). This development coincided with 

the adoption of critical levels, which was defined as ‘a given concentration [of a 

pollutant] in the atmosphere above which direct adverse effects on vegetation may 

occur’ (Critical Loads Advisory Group, 1996; CLRTAP, 2017). The AOT40 critical 

levels for agricultural crops (wheat) was established as 3000 ppb h over 3 months to 

prevent annual yield losses of 5% or more. At the time this critical level was widely 
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adopted, 70% of England and Wales exceeding this AOT40 level (Critical Loads 

Advisory Group, 1996). 

 However, while AOT40 calculated cumulative ozone exposure over a certain 

threshold, it failed to account for ozone uptake into the leaf via stomata. This led to eco-

physiologists developing an alternative flux-based metric - now referred to as PODy 

(Phytotoxic Ozone Dose) - which quantifies the cumulative uptake of ozone through 

the stomata and into the apoplast, i.e. the dose that plant cells are subject to (LRTARP 

Convention, 2017; Pleijel et al., 2022), which better predicted crop yield responses to 

seasonal ozone exposure (Mills et al., 2011). However, the additional complexity of 

calculating stomatal flux for this approach and the need for high-resolution 

meteorological data and accurate means of estimating stomatal conductance have 

delayed its wide-spread adoption by policy bodies outside of the LRTAP region. 

 Several models have been developed to estimate such a flux-based metric. Of 

these, the most detailed is the Deposition of Ozone for Stomatal Exchange (DO3SE) 

model. While DO3SE is considered a more accurate predictor of dose received by the 

plant and hence impact, it relies on robust stomatal conductance modelling. While many 

such models have been proposed, DO3SE is based on a multiplicative algorithm adapted 

from Jarvis (1976) (Emberson et al., 2000). This algorithm requires measurements of 

many environmental parameters that stomata respond to, such as phenology, light, 

temperature, vapour pressure deficit, and soil water potential (Emberson et al., 2000), 

but this raises practical limitations, as these measurements over a growing season are 

often scarce (Emberson et al., 2000; Damor et al., 2020). The DO3SE model has since 

been expanded to calculate the impacts of ozone on crop photosynthesis and carbon 

allocation (Emberson, 2023).  

As a result of the difficulties accessing the data required for the DO3SE model, 

more parsimonious exposure/uptake calculations have also been proposed and widely 

adopted. Here, we use those developed by Lombardozzi et al. (2013), such that 

cumulative ozone exposure (CEO3) is calculated as:  

 

𝐶𝐸𝑂3 (𝑚𝑚𝑜𝑙 𝑚𝑜𝑙 −1 h) =  [𝑂3] ∙  𝐻 ∙  𝐷 ∙  10−3 

[Equation 1] 

where: [𝑂3] is ozone concentration in mol, 𝐻 is number of hours, and 𝐷  number of 

days, and 10−3 is the conversion from mol to mmol.  

 

Cumulative ozone uptake (CUO3) is then estimated as:  

 

𝐶𝑈𝑂3 (𝑚𝑚𝑜𝑙 𝑚𝑜𝑙 −1h 𝑙𝑒𝑎𝑓)  = 𝐶𝐸𝑂3 ∙ 𝑔s ∙ 1.67  

 

[Equation 2]  

where 𝐶𝐸𝑂3  is cumulative ozone exposure, 𝑔s  is stomatal conductance as a single 

value, and 1.67 is the ratio of leaf resistance for ozone to leaf resistance for water 

vapour.  
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1.7 Ozone exposure experimental designs 

To empirically understand vegetation responses to ozone, various bespoke experiments 

have been developed since the 1970s. Free-air O3 elevation interfaces are considered 

the most important for establishing critical levels, as they are most comparable to real-

world conditions (Matyssek et al., 2007; Paoletti et al., 2017). Free-air O3 elevation 

interfaces have relatively simple experimental designs: perforated tubes release 

controlled volumes of ozone into plots or small cropping areas to elevate ozone to the 

desired concentration, with environmental conditions logged in each plot. Crops are 

generally planted/sown directly into the ground, meaning that there is little risk of pot-

based compaction or root constraint occurring which may be synergistic with ozone 

effects (Whitfield et al., 1996). However, while the set-up is straightforward, there are 

limitations such as the flow of ozone being re-directed by prevailing winds or rapid 

deposition, creating heterogenous ozone distribution, and therefore a non-uniform 

ozone response, within a plot (Watanabe et al., 2013; Paoletti et al., 2017). It may also 

be challenging to eliminate or moderate other stressors, such as pests and disease, which 

may exacerbate or mitigate the observed ozone effect.  

Open top chambers (OTC) are the most frequently used experimental setups in 

ozone exposure studies (Calatayud et al., 2011; De Bock et al., 2012; Desotgiu et al., 

2013). OTCs are a semi-enclosed system, with Perspex or Teflon chamber sides rising 

from ~1.6 to 4 m in ozone-exposure experiments (Pleijel et al., 1991). For example, the 

OTCs at the University of Antwerp, Belgium has a 3 m radius, with a frustrum placed 

at a 40 downward angle at the top of each chamber (De Bock, 2011). This, along with 

the enclosed sides, limits the risk of wind direction and speed dispersing ozone beyond 

cropping area and better maintains ozone homogeneity within chambers. However, the 

enclosed sides and materials used may increase internal air temperatures and decrease 

relative humidity beyond that of typical field conditions, termed ‘passive chamber 

warming’, which may induce stomatal closure and limit ozone uptake (Fuhrer, 1994; 

Frei et al., 2020). While OTCs and free air enrichment are similar, directly comparing 

the ozone damage or yield loss in the two experimental setups highlights discrepancies 

between them. For example, when comparing multiple studies, Feng et al. (2018) found 

that rice and wheat had a greater ozone-induced yield loss in free air experiments than 

those conducted in OTCs (with ozone ranging between 20 and 100 ppbv above 

ambient), but soybean lost more yield in OTCs than free-air plots. This suggests that 

OTCs may over- or under-estimate critical levels and yield losses at an interspecific 

level, when compared with free air experiments, with free-air experiments considered 

to better represent real-world conditions than OTCs (Feng et al., 2018).  

Glasshouses retrofitted with ozone fumigation piping are also regularly used for 

ozone experiments. For example, UKCEH’s Abergwyngregyn site comprises of four 

heated and four unheated geodesic glasshouses (Solardomes), with monitored ozone 

injection lines independently elevating ozone levels in each (van Oijen et al., 2003; 

Hayes et al., 2006). This allows pot-based experiments over an entire growing season. 

Ozone levels are carefully controlled and continuously monitored. Other environmental 

parameters (relative humidity, temperature, light) within the Solardomes are monitored 
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and logged, and are statistically similar across Solardomes. Solardomes remove the risk 

of ozone being diverted by wind speed or direction and reduce the heterogeneity of 

ozone within each glasshouse using engine-driven fans to circulate ozone-elevated air. 

The enclosed space also limits prevalence of pests (van Oijen et al., 2003). Plant pot 

positions are moved within and between Solardomes to limit temperature- and shade-

induced stomatal closure from edge effects and to minimise “chamber” (i.e. glasshouse) 

effect (Hayes et al., 2020). Four unheated Solardomes, as shown schematically in Figure 

1.6a, were used for the study presented in Chapter 3 this thesis. 

Laboratory experiments offer the most accurate and tightly controlled 

environmental conditions, e.g., light regime, temperature, and soil moisture content 

(Potter et al., 1996). Sealed Perspex or Teflon chambers have been frequently used to 

elucidate biochemical mechanisms such as phytohormone function under chronic 

exposures (Wilkinson and Davies, 2009), to expose plants to very high ozone levels (> 

200 ppbv) (McAinsh et al., 2002; Souza and Pagliuso, 2009; Stokes et al., 1993), or to 

expose certain plant parts, such as flowers, to specific ozone concentrations (Black et 

al., 2010). While using chambers enables the researcher to remove all other sources of 

environmental stress and thus focus solely on the impacts of ozone exposure, there is 

uncertainty regarding how results translate to field conditions due to limited pot size 

(Poorter et al., 2012a). Experimental Chapters 4 and 5 in this thesis used sealed Perspex 

1-m3 semi-controlled chambers, refurbished in 2021 from an original fumigation system 

at Lancaster Environment Centre (as in Stokes et al., 1993), and are shown in Figure 

1.6b. Environmental parameters (light, temperature, relative humidity) were logged 

throughout experiments and did not significantly differ between chambers. Pots were 

however rotated within each chamber to minimise edge effects. 
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Figure 1.5. Schematic of a) Solardome experimental set-up used in UKCEH Bangor in Chapter 3, and b) 

laboratory experimental 1-m3 chambers at Lancaster Environment Centre used in Chapters 4 and 5. 

1.8 Breeding ozone-tolerant crops 

To enable agronomists to mitigate the impacts of high ozone exposure on crop 

yield, ozone tolerance in crops needs to be clearly identified and quantified in a 

standardised and reproducible way. However, there are currently multiple definitions of 

ozone (stress) tolerance. Moreover, Brassica oilseed development programmes seldom, 

include ozone as a stressor or risk factor in breeding trials (Wang et al., 2014; Frei, 
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2015), meaning the identification and exploitation of ozone tolerance traits rarely occur 

(Fagerstrom et al., 1987; Paul-Victor et al., 2010).  

1.8.1 Defining tolerance 

Ozone tolerance in crops is currently determined in several ways including measuring 

seedling lethality, shoot biomass changes, yield loss, and photosynthetic responses 

(Barnes et al., 2002; Ryan et al., 2009). Multiple studies have also focused on visible 

injury, with plants exhibiting smaller areas of necrotic lesions deemed more ozone 

tolerant (e.g., Calvo et al., 2007; Smith, 2008; Treshow, 1970). Some studies also 

consider germination rate under stress conditions to indicate tolerance (Zhang et al., 

2015; Wu et al., 2019). While screening germinating seeds for ozone sensitivity 

provides a reliable and high-throughput method, it may not be representative of real-

world conditions, as plants at different growth stages are known to be differently 

impacted by high ozone levels (Pleijel et al., 1998), as shown in Table 1.1. Furthermore, 

the most agronomically relevant definitions of tolerance are those associated with 

biomass accumulation, yield, and/or maintained mass of harvestable portion. For 

example, Feng et al. (2022) considered plants that maintained biomass or yield under 

increased exposures relative to control to be stress tolerant, and this is also the 

philosophy underpinning critical level set for the PODy and AOT40 metrics.  

Changes in biomass accumulation and allocation are particularly important, 

given reported changes in the allocation of photosynthate to biomass vs. defence against 

ozone. For example, the optimal defence theory states that plants prioritise defensive 

mechanisms and divert photosynthate to antioxidants in the most ‘valuable’ tissues 

when under stress to maintain or increase plant fitness (Fagerstrom et al., 1987; McCall 

and Fordyce, 2010; McKey, 1974; Van Dam et al., 1996). However, antioxidant 

synthesis, regulation, and storage are metabolically costly, usually at the expense of 

growth and reproduction, and therefore may conflict with the primary aims of Brassica 

oilseed breeding programmes: to maximise relative growth rates (Wolinska and Berens, 

2019). Furthermore, it is not known whether the most ‘valuable’ tissues are expanding 

leaves or reproductive tissues, as this may be species- or cultivar-dependent. For 

example, it may be more advantageous for slow-growing plants (perennial or biennial 

plants) to reallocate photosynthate to antioxidants, compared to fast-growing plants 

which may allocate photosynthate to reproductive sites, thus increasing plant fitness 

(Van Dam et al., 1996).  Moreover, contrary to the optimal defence theory, antioxidant 

synthesis may not be detrimental to biomass allocation in response to abiotic and biotic 

stress in Brassicaceae species e.g., Arabidopsis thaliana L. (Paul-Victor et al., 2010; 

Züst et al., 2011) and Boechera stricta Graham, as antioxidants may stimulate 

vegetative or reproductive growth (Siemens et al., 2010). 

Thus far, there is no biochemical nor physiological definition of ozone tolerance, 

largely due to the myriad metabolites that may be synthesised, and specialised plant 

tissues that may be damaged, thus causing challenges in comparing responses of 

cultivars or species (Chen et al., 2009; Ryan et al., 2009). Moreover, biochemical 

changes are commonly reported in isolation from other measurements, meaning it is 
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challenging to correlate biochemical responses with maintained biomass or gas 

exchange (Calatayud et al., 2011; Chernikova et al., 2000). However, the magnitude of 

ROS formation and biochemical responses are dependent on cumulative stomatal 

uptake, meaning that both may be required to confer tolerance (Ryan et al., 2009). For 

example, Massman et al (2004) proposed an ‘effective ozone dose’ which accounted 

for both stomatal uptake and ozone quenching via antioxidants similar to ‘y’ in the 

PODy metric. To date, however, there have been no investigations of how common 

biomarkers, such as antioxidant activity (AsA, APX, SOD), oxidative stress (H2O2) and 

damage (MDA), relate to changes in yield/biomass and quality parameters. Identifying 

and quantifying such relationships would allow simple meaningful comparisons of 

tolerance between species and cultivars.  

1.8.2 Current OSR breeding strategies and exploiting stress tolerance 

Breeding programmes target different desirable traits which optimise seed yield and 

quality. European recommended lists (lists of high yielding cultivars by country) today 

consist of mostly conventional OSR cultivars, which are bred by crossing individuals, 

with progeny selected based on visual assessment of desirable traits (uniformity, high 

yield, pest resistance, and disease tolerance) (AHDB, 2020). However, a conventional 

breeding programme may take up to ten years to release a new cultivar due to more 

rigorous screening being required for genetic uniformity (Mitrousia, pers. comm.), 

which is at odds with improving or maintaining OSR yield and quality under future 

climate scenarios. “Restored” OSR hybrids, which exploit cytoplasmic male sterility to 

combine desirable traits from a single line, offer an opportunity to contract breeding 

programme timelines: hybrids may be developed in six years (Kessel et al., 2012). 

Restored hybrids were introduced to recommended lists in the 1990s and are 

increasingly popular amongst European and Canadian growers, primarily due to 

increased yields per hectare, as seen in mainland Europe (AHDB, 2020).   

There are many methods for improving stress tolerance in Brassica oilseeds, 

including both conventional and hybrid breeding strategies. For example, herbicide 

resistant OSR cultivars were developed by identifying desirable traits using restored 

hybrid breeding methods (Senior and Dale, 2002). However, further identification of 

tolerance traits is required to enable improvement in advanced cultivars. Indeed, stress 

tolerance (and genes that confer tolerance) are progressively being identified by 

combining high-throughput biochemical assays and genotyping  on the same leaf tissue 

sample (Conesa and Beck, 2019). Moreover, genetic modification offers an additional 

opportunity to improve drought tolerance by inserting such genes (e.g., antioxidant 

genes) into OSR genome and has been used in the USA (Lawlor, 2013; Wan et al., 

2009). However, commercial GM technologies are not currently applicable to UK and 

European Union agriculture (Zilberman et al., 2013; DEFRA, 2022). Another avenue 

to exploit stress tolerance is introgression, supported with molecular techniques such as 

the identification of quantitative trait loci associated with desirable traits, wherein 

different Brassica oilseed crop species are hybridised to introduce desirable traits from 
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one line into another. A classic example of this is increasing seed oil content in B. rapa 

and B. juncea (Panjabi et al., 2019; Snowdon and Friedt, 2004).  

 

1.9 Motivation and rationale 

This thesis focuses on the effects of elevated tropospheric ozone on Brassica oilseed 

crops, and principally B. napus. B. napus, used for food, fodder, and fuel production, 

was the second-most important oilseed crop worldwide in 2020 after soya. Background 

levels of ozone have increased by up to a third in key OSR cultivation areas such as 

South-East Asia and Canada since 1996 (Xu et al., 2019), and are projected to increase 

by a further 20% by 2100 in areas of agricultural importance in the Northern 

Hemisphere according to RCP8.5 scenario (Archibald et al., 2020). Production areas of 

OSR already overlap with areas receiving potentially damaging levels of ozone (Figure 

1.6, and this could cause increased damage over the full growing season (chronic 

exposure) and/or the short-term e.g., episodes over hours or days (acute exposure) 

(Grantz et al., 2003; Lin et al., 2020).  

Previous studies of the impact of ozone on crop productivity have suggested 

significant declines in yield and crop quality under the levels of ozone projected in most 

world regions leading to concerns over future harvests of key crops such as Brassica 

oilseeds in the future (Fowler et al., 2009; Mills et al., 2018b). However, challenges in 

understanding the impact of ozone on crops have resulted in large uncertainties in 

projections of future harvests. Given the global socio-economic importance of Brassica 

oilseeds, the reliance on oilseed for calorie demand, and the projected increases in 

global population (to 9-10 billion by 2030), any loss of productivity would have severe 

implications for food security. It is therefore of paramount important to understand the 

physiological, morphological, and biochemical responses of Brassica oilseeds to 

oxidative stress caused by exposure to tropospheric ozone concentrations above current 

ambient levels. However, it is also essential to develop a mechanistic understanding of 

the role of each of antioxidants, metabolites, and gas exchange if we are to be able to 

project future stress-related crop losses, and potentially use mitigation strategies such 

as identifying and exploiting ozone tolerant OSR traits in breeding programmes and 

agronomic practices.  
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Figure 1.6. World maps of Brassica oilseeds showing a) average yield, b) areas under production, and c) 

population-weighted mean annual 8-hr ozone levels across major cultivation regions. Map reproduced 

using oilseed data from FAOSTAT (2022) and ozone data from European Environment Agency (2022). 
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2. Thesis aims, objectives, and structure 

2.1 Thesis aims and objectives 

This research aims to understand the effects of realistic tropospheric concentrations of 

ozone on the physiology, morphology, and biochemistry of Brassica oilseeds.  

This thesis has three specific objectives:  

1. To gain an empirical understanding of the effects of chronic and episodic ozone 

concentration/flux in Brassica oilseed morphology, physiology, antioxidants, 

and final yield (Chapters 3, 4, 5). 

2. To determine whether ascorbic acid (AsA), a ubiquitous non-enzymatic 

antioxidant plays a key role in delaying ozone-induced foliar senescence and 

could therefore provide an indicator of ozone tolerance (Chapter 4).  

3. To explore how key compounds indicative of oxidative stress, oxidative damage 

and enzymatic antioxidant activity may be used as biochemical markers of 

ozone response and whether such markers may be used to quantify ozone 

tolerance (Chapter 5). 

 

2.2 Thesis structure 

Chapter 1: Introduction 

This chapter explores current understanding of the morphological, physiological, and 

biochemical effects of tropospheric ozone on Brassica oilseed crops. I explain the 

importance of different Brassica oilseed species to food security, and the challenges 

associated with ensuring seed quality and yield despite increasing environmental 

stressors. Following this, I describe the risks posed by one often-overlooked stress: 

tropospheric ozone, a phytotoxic air pollutant, levels of which are projected to continue 

to rise under future global change. I detail how ozone may impede physiology, stomatal 

functioning and accelerate senescence, thus decreasing final yield and quality of the 

oilseed. Subsequently, I explain the underlying biochemical effects and processes, such 

as oxidative stress and damage, and defence mechanisms such as antioxidants. I 

compare current experimental methodologies for quantifying and comparing the ozone 

sensitivity of different species. I conclude by describing the findings of previous studies 

specifically investigating the response of OSR and Brassica oilseeds to ozone exposure 

and explain the motivation and rationale of this thesis.  

 

Chapter 2: Thesis aims, objectives, and structure (current chapter). 

 

Chapter 3: Chronic tropospheric ozone exposure reduces seed yield and quality in 

spring and winter oilseed rape. Roberts, H.R., Dodd, I.C., Hayes, F.,  Ashworth, K., 

2022, published in  Agricultural and Forest Meteorology, vol. 316, 108859. doi: 

10.1016/j.agrformet.2022.108859 

https://www.research.lancs.ac.uk/portal/en/publications/chronic-tropospheric-ozone-exposure-reduces-seed-yield-and-quality-in-spring-and-winter-oilseed-rape(1db31cc2-720b-47cb-a131-907b420af117).html
https://www.research.lancs.ac.uk/portal/en/publications/chronic-tropospheric-ozone-exposure-reduces-seed-yield-and-quality-in-spring-and-winter-oilseed-rape(1db31cc2-720b-47cb-a131-907b420af117).html
https://www.research.lancs.ac.uk/portal/en/people/ian-dodd(260b6886-68ed-44d2-8100-2f1ce6a5612b).html
https://www.ceh.ac.uk/staff/felicity-hayes
https://www.research.lancs.ac.uk/portal/en/people/kirsti-ashworth(13bedd4c-2e04-493b-82fe-19e344514448).html
https://doi.org/10.1016/j.agrformet.2022.108859
https://doi.org/10.1016/j.agrformet.2022.108859
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This chapter addresses the first objective: to gain an empirical understanding of the 

effects of chronic and episodic ozone on Brassica oilseed yield, morphology, and 

physiology. Having identified a key knowledge gap: understanding the changes in 

physiology, biochemistry, yield, and quality in both spring and winter OSR across a 

range of real-world chronic ozone levels, I compared the responses of two B. napus 

cultivars with differing lifespans to ozone levels representative of realistic European 

growing season conditions. I hypothesised that faster-growing oilseed rape cultivars 

would be more sensitive to ozone due to higher leaf gas exchange rates over their 

(shorter) life cycle, resulting in higher ozone uptake and therefore greater cumulative 

exposure to this abiotic stress. I postulated that, given the tight seed quality regulations 

in oilseed markets and previously reported stress-induced declines in seed yield and 

quality in other Brassica oilseed species, short-lived spring OSR may become less 

economically viable than a slower-growing winter OSR. Hence, I exposed two currently 

recommended OSR cultivars - one spring variety, ‘Click’, and one winter variety, 

‘Phoenix’ - to four levels of ozone, representative of real-world conditions (20, 55, 80, 

and 110 ppbv), over an entire growing season in a semi-controlled Solardome 

environment. This experiment reproduced the chronic ozone exposure typically 

experienced by OSR crops in different growing regions of Europe.  

Analysis of physiological and morphological data collected during vegetative 

and reproductive growth stages showed a marked decline in photosynthesis, particularly 

in the spring cultivar, while accelerated senescence was observed in both varieties. 

Although Phoenix maintained physiology and vegetative growth despite the higher 

cumulative ozone exposure that resulted from its longer growth cycle, Thousand Seed 

Weight (TSW), an important measure of final yield, decreased by 40% in Phoenix 

compared with 20% in Click. However, seed quality, measured here as total oil content, 

declined by 9% in Click, but remained unchanged in Phoenix. As higher quality 

enhances financial premiums for growers, reduction in seed quality confers an 

economic penalty in the same way as loss of yield. Given the very low profit margins 

of OSR as a crop, these losses (of seed quantity in Phoenix and quality in Click) suggest 

that the economic viability of both OSR cultivars, vital for food and fodder production, 

in Europe in the future may be under threat by ozone pollution.  

 

Chapter 4: Cultivar and leaf-specific biochemical responses to short-term ozone 

exposure in winter and spring oilseed rape. Roberts, H.R., Dodd, I.C., Hayes, F., 

Ashworth, K., in preparation for submission to Journal of Experimental Botany, April 

2023. 

This chapter addresses the second objective: to determine whether a key non-enzymatic 

antioxidant (ascorbic acid, AsA) may delay ozone-induced foliar senescence and could 

provide a marker and measure of ozone tolerance. Based on my previous findings that 

the gas exchange and chlorophyll content of Phoenix was maintained under high ozone 

levels despite substantial yield reductions, I postulated that winter OSR diverts more of 

the carbon assimilated during photosynthesis to protective products and mechanisms 

and maintains seed filling at the cost of vegetative growth (or longevity), in line with 

the ‘optimal defence theory’. These experiments focused on ascorbic acid (AsA), as it 

https://www.authorea.com/users/610155/articles/639191-canola-brassica-oilseed-species-are-more-ozone-tolerant-than-non-canola-counterparts?commit=acf3f3ec6d859ac2b43797b60c69492ddff57c30
https://www.authorea.com/users/610155/articles/639191-canola-brassica-oilseed-species-are-more-ozone-tolerant-than-non-canola-counterparts?commit=acf3f3ec6d859ac2b43797b60c69492ddff57c30
https://www.research.lancs.ac.uk/portal/en/people/ian-dodd(260b6886-68ed-44d2-8100-2f1ce6a5612b).html
https://www.ceh.ac.uk/staff/felicity-hayes
https://www.research.lancs.ac.uk/portal/en/people/kirsti-ashworth(13bedd4c-2e04-493b-82fe-19e344514448).html
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is known to be a primary regulator of plant responses to oxidative stress and the most 

ubiquitous non-enzymatic antioxidant. High concentrations of endogenous foliar AsA 

are a key regulator of senescence and have also previously been shown to be correlated 

with increased ozone tolerance in crops. I measured leaf gas exchange alongside AsA 

and markers of oxidative stress (H2O2) and damage (MDA) across an acropetal gradient 

of leaf ages in OSR cv. Click and cv. Phoenix under ozone. Plants were exposed to 

ambient (~20 ppbv) and high (100 ppbv) levels of ozone in two 1-m3 semi-controlled 

environment chambers in a laboratory. This allowed me to determine whether cultivar 

differences in the previous experiment were correlated with differences in endogenous 

AsA content. The suite of measurements also enabled me to disentangle the effects of 

differences in cumulative ozone uptake and leaf age on ozone-induced oxidative stress 

and injury, and to determine the potential antioxidative role of AsA in the response of 

OSR to ozone. I found that total AsA content was significantly higher in Phoenix than 

Click, which according to the optimal defence theory would suggest that Phoenix was 

more ozone tolerant. However, while Phoenix better maintained stomatal conductance, 

chlorophyll content, and the performance of Photosystem II, leaf area and total plant 

mass declined after only 12 days of high ozone exposure. By contrast, the stomatal 

conductance, chlorophyll content at lowest leaves, and performance of Photosystem II 

in Click declined more than Phoenix, but leaf area and total plant mass were better 

maintained. Stomatal uptake dictated tolerance in Click, even over such a short period 

of exposure. Thus, while Click closed its stomata under high ozone conditions and 

therefore avoided high ozone uptake, Phoenix instead diverted photosynthate into 

defence against oxidative stress. Click was therefore able to maintain leaf area and 

biomass under stress conditions, suggesting its final yield would be relatively 

maintained.  

 

Chapter 5: Canola-grade Brassica oilseed species are more ozone tolerant than 

non-canola counterparts Roberts, H.R., Hayes, F., Dodd, I.C., & Ashworth, K., Under 

Review at Plant, Cell & Environment, April 2023. 

This chapter addresses the third objective: to determine the key biochemical factors that 

confer ozone tolerance in spring-sown Brassica oilseeds of different breeding 

pedigrees. Based on my previous findings that AsA did not convey tolerance in OSR 

despite higher levels being measured in Phoenix, I postulated that a related enzymatic 

antioxidant, ascorbate peroxidase (APX), and a second enzymatic antioxidant, 

superoxide dismutase (SOD) which functions up-stream of APX, may be more suitable 

markers of tolerance. Moreover, as advanced Brassica oilseed cultivars are selected for 

high productivity/yield and thus high gas exchange, I also hypothesised that more 

selectively bred cultivars would therefore uptake more ozone and sustain greater 

oxidative damage, i.e. would be more sensitive to ozone than traditional landraces. I 

selected two canola-grade cultivars from Canada and Europe, and two non-canola-grade 

landraces from Pakistan (B. juncea cv. 15127 and B. rapa cv. 07224). Each was exposed 

to four ozone levels spanning typical conditions during the main growing season in the 

Northern Hemisphere (20 ppbv, 50 ppbv, 75 ppbv, and 100 ppbv) for 24 days during 

the vegetative growth stages that have previously been demonstrated to be particularly 

https://www.ceh.ac.uk/staff/felicity-hayes
https://www.research.lancs.ac.uk/portal/en/people/ian-dodd(260b6886-68ed-44d2-8100-2f1ce6a5612b).html
https://www.research.lancs.ac.uk/portal/en/people/kirsti-ashworth(13bedd4c-2e04-493b-82fe-19e344514448).html
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vulnerable to oxidative stress. The non-canola-grade landrace B. rapa cv. 07224 had the 

highest gas exchange and lowest antioxidant activities of the four lines and suffered the 

greatest damage in terms of biomass accumulation. By contrast, its canola-grade 

counterpart, Brassica rapa cv. Candle, had the lowest ozone uptake and the highest 

enzymatic antioxidant activities and appeared to be stimulated by ozone concentration 

resulting in an increase in biomass with increasing exposure.  

Using the differences in key biochemical compounds I observed between the 

lines as a basis, I developed a relative stress index to quantify ozone tolerance, which 

has previously only been subjectively described and compared (Chaudhary, and 

Rathore, 2021; Melhorn et al., 1991; Paoletti et al., 2022; Reich, 1987). This index 

incorporates both the average antioxidant activity and oxidative damage, and I 

demonstrated that it strongly correlated with both cumulative ozone exposure and shoot 

plant biomass and was therefore an excellent descriptor and predictor of ozone tolerance 

in these oilseed species. B. rapa cv. Candle, qualitatively the most tolerant cultivar, 

returned a negative relative stress index while B. rapa cv. 07224, the most sensitive, a 

high positive index. The other two cultivars exhibited some qualitative signs of 

oxidative stress and damage and had slightly positive relative stress indices. I therefore 

concluded this study by suggesting that calculating relative stress indices based on 

biochemical markers and applying them during the breeding process may aid in 

speeding up breeding programmes when selecting for stress-tolerant crops.  

The three primary research studies combine morphological, physiological, and 

biochemical measurements to gain a better understanding of Brassica oilseed response 

to ozone. The studies also identify opportunities for determining and exploiting ozone 

tolerance in OSR cultivars.  

 

Chapter 6: General discussion and conclusions 

In this chapter, I reflect on the findings from chapters 3, 4, and 5, and pose scientific 

questions that these have provoked. I also briefly summarise remaining gaps in 

knowledge and present avenues of further research to address these.  
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3. Chronic tropospheric ozone exposure 

reduces seed quantity and quality in 

spring and winter oilseed rape.  
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3.1 Abstract 

Oilseed rape (Brassica napus L.) is cultivated worldwide, producing 11.5% of 

global oilseeds at an economic value of 38 billion USD in 2020. It is sensitive to 

phytotoxic damage from exposure to tropospheric ozone (O3), a major air 

pollutant, which disrupts plant physiological processes and thus decreases biomass 

accumulation. As background ozone concentrations continue to increase globally, 

we investigated the impact of ozone exposure on seed and oil yield of a shorter-

lived spring (cv. Click) and a longer-lived winter (cv. Phoenix) oilseed rape cultivar 

to ozone levels (treatments with peaks of 30, 55, 80, 110 ppbv) representative of 

typical European conditions where these cultivars are common. Thousand Seed 

Weight (TSW), an important measure of final yield, decreased more in Phoenix 

(40%) than Click (20%) with increasing ozone exposure. Click produced more 

racemes and many small seeds while Phoenix produced fewer racemes and larger 

seeds. However, seed quality declined more substantially in Click than Phoenix. 

The oil content in Click’s seed significantly decreased with increased ozone 

exposure, while less desirable components (moisture, chlorophyll, ash) increased. 

Scaled to field-level, our findings imply substantial economic penalties for growers, 

with potential losses of 175 to 325 USD ha-1 in Click and 500 to 665 USD ha-1 in 

Phoenix under ozone concentrations typical of spring and summer periods in 

Europe. Decreased total yield would likely outweigh the benefits of any 

improvement in animal oilseed cake quality (increased protein and key 

micronutrients for livestock feed). Neither cultivar sustained visible injury at 

earlier growth stages, and Phoenix sustained photosynthesis even under high 

exposure, thereby making ozone an invisible threat. Our findings of reduced 

oilseed quantity and quality threaten oilseed rape production, but differences 

between the cultivars may also offer an opportunity for breeders and agronomists 

to identify and exploit variation in ozone tolerance in oilseed rape.  
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3.2 Introduction 

Canola or oilseed rape (hereafter OSR) is the second-most economically 

important oilseed crop on the planet after soya, and the most important in Europe, where 

over 16.8 million tonnes were produced in 2020, representing 60% of total oilseed 

yields (European Commission, 2020). Global production of rapeseed oil exceeded 27.7 

million metric tonnes in 2020, with a market worth ~24 billion USD, while soya’s 

market produced 60.3 million tonnes of oil worth ~55 billion USD (USDA, 2021). 

Moreover, the oilseed cake or protein meal, left once OSR is crushed to remove edible 

oil, is produced as a valuable global animal feedstock. In 2020, worldwide OSR-derived 

animal feed totalled 39.2 million tonnes, at a market value of ~14 billion USD, with 

Europe generating a third of both global OSR oil and protein meal (USDA, 2021). 

Understanding the effects of changes in environmental conditions on key crops 

such as oilseed rape has become of significant interest for agronomists, crop breeders 

and policy makers to reduce crop losses and risks to food security. One important but 

often overlooked environmental stress is tropospheric ozone. Average global ozone 

concentrations have increased by ~20% since 1900 and are projected to increase by a 

further 18% by 2100 (Young et al., 2013; Archibald et al., 2020). Increased emissions 

of ozone precursors, along with rises in global temperature, have resulted in average 

European background concentrations exceeding 30 ppb annually (Archibald et al., 

2020; Boleti et al., 2020). Daytime concentrations between 50-80 ppb in Northern 

Europe and >100 ppb in Central and Southern Europe have been recorded in rural areas 

over spring-summer periods (Pay et al., 2019; Boleti et al., 2020), which coincide with 

key growing dates in the agricultural calendar (Mills et al., 2018a). While episodic high-

ozone events (acute exposure) have long been recognised to trigger phytotoxic damage 

to vegetation (e.g. Heggestad & Middleton, 1959), there is increasing awareness of the 

impacts of cumulative, chronic exposure to lower levels of ozone (Chen et al., 2009; 

Mishra & Agrawal, 2015). Under current atmospheric conditions in Europe, OSR crops 

are exposed to levels of ozone over days, weeks, or entire growing seasons likely to be 

sufficiently high to reduce yields (Lei et al., 2012; Lin et al., 2020; Mills et al., 2007; 

Mills et al., 2018c).  

Tropospheric ozone has well-documented detrimental effects on crop 

physiology, due to its highly oxidising properties. Ozone enters leaves (mostly) via the 

stomata, resulting in cellular damage and disruption of photosynthetic pathways in 

ozone-sensitive species, decreasing net photosynthetic rate (Pnet) (Bohler et al., 2007). 

Oxidation of cellular and organelle membranes also occurs, resulting in foliar chlorosis, 

and accelerated senescence (Tammam et al., 2019; Sharps et al., 2021). Direct damage 

of stomata and guard cells can also occur, leading to loss of stomatal regulation during 

periods of water stress at chronic exposures of more than 40 ppbv above ambient (Mills 

et al., 2009), potentially exacerbating the impact. Consequently, overall productivity, 

and crop yields decrease in ozone-sensitive species.  

Previous studies using open top chambers, free air systems, and field trials have 

shown OSR to be a moderately ozone-sensitive species (Mills et al., 2007), with ozone 

concentrations higher than 60 ppb decreasing seed yield by 15-38% and oil content by 
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5% (Ollerenshaw et al., 1999; Clausen et al., 2011; Namazkar et al., 2016). Experiments 

at both plot- and field-scale observed decreased thousand seed weight (TSW), and 

decreased oil content (Black et al., 2000; De Bock et al., 2011; Frenck et al., 2011; 

Vandermeiren et al., 2012), suggesting that ozone exposure affects crop quality as well 

as yield. Seed content of valuable compounds, primarily oil (for food and industrial 

processing) and protein (for fodder in the form of oilseed cake) may decrease by >18% 

in response to ozone stress as observed in OSR relatives (Singh et al., 2013). Fatty acid 

proportions may also be affected, with increases observed in erucic acid content 

(Tripathi et al., 2012), which is tightly regulated to less than 2% to avoid cardio 

myotoxicity in both livestock and humans (EFSA Panel on Contaminants in the Food, 

2016). Furthermore, exposure to ozone may exacerbate unfavourable properties in the 

extracted oil, including increased moisture (>10%), chlorophyll (>20%), and 

Glucosinolates (>3mg/g), affecting shelf life, appearance, or palatability of edible oil 

(Wittkop et al., 2009). Micronutrient contents in seed cake maintain optimum livestock 

health, and key elements such as zinc, manganese, and iron have been observed to 

decrease under other abiotic stresses such as drought (Etienne et al., 2018), but have not 

been reported in response to ozone stress.   

In Europe, OSR comprises two seasonal groupings: spring (over an area of 

14,000 ha in the UK in 2020, which has tripled compared to previous four years) and 

winter-sown varieties (331,000 ha in the UK in 2020) (Butruille et al., 1999; DEFRA, 

2020). Winter varieties are sown in mid-August to early September, harvested in July 

to August, and are the primary type grown in Europe. Spring varieties are sown in late 

March to early April, harvested in late August to September, and grown throughout 

Europe and Canada (AHDB, 2020). Spring varieties are faster-growing and have shorter 

lifespans compared to their winter counterparts. Previous studies on other species 

suggest those with shorter life cycles are more susceptible to ozone damage (Franzaring 

et al., 2000). It is postulated that short-lived plants that are bred for rapid growth have 

higher rates of leaf gas exchange over their life cycle, and therefore may be exposed to 

greater abiotic stress such as higher ozone uptake (Felzer et al., 2007), resulting in 

greater sensitivity to ozone (as in Osborne et al., 2016). Fast-growing spring OSR could 

therefore become economically unviable if exposure to high ozone levels substantially 

reduces yield or quality. In this study, we compare two modern cultivars of spring and 

winter OSR, to examine whether their physiological, morphological, and agronomic 

responses to ozone exposure differ over their full life cycles, and test three specific 

hypotheses: 

i. Seed yield and quality will decrease in both cultivars as ozone exposure 

increases. 

ii. Seed yield and quality declines will be a reflection of decreased physiology 

and biomass accumulation. 

iii. Decreases will be more pronounced in the spring cultivar and will occur at 

lower exposures.  

Here we used semi-controlled environments in geodesic glasshouses and a 

bespoke ozone injection system to expose OSR to four different concentrations of ozone 
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over a full growing season. This is the first study to directly compare the responses of 

spring and winter varieties of OSR to chronic ozone exposure over a growing season at 

realistic levels of ozone experienced in Europe, providing valuable information to 

growers on OSR yield and quality. 

 

3.3 Methodology 

3.3.1 Plant material and care 

Spring (cv. Click) and winter (cv. Phoenix) Brassica napus cultivars (supplied by DSV 

United Kingdom Ltd., Top Dawkins Barn, Wardington, Banbury, UK) were vernalised 

for 4°C; for 14 days at 65% RH prior to being transplanted in bedding packs in John 

Innes no. 2 soil on 5th May 2019 in a glasshouse at the UK CEH Bangor experimental 

Henfaes Farm, Abergwyngregyn. Seedlings were transferred after three weeks into 

individual 6.5 L (28 cm H, 21 cm D) pots in John Innes no. 2 compost. Two weeks later, 

when plants had six fully unfolded leaves (growth stage 16), the middle 40 plants by 

size per cultivar were selected and divided between the 4 treatments using stratified 

randomisation. Plants were watered daily during late afternoon, and fertiliser 

(Phostrogen All Purpose Plant Food) and pesticide (Provanto systemic fruit and 

vegetable bug killer) applied as a soil drench 21, 35, 49 days after sowing to both 

varieties according to manufacturer’s instructions, with an additional treatment at 70 

days to Phoenix.  

3.3.2 Experimental site and Solardome system  

Ten plants per cultivar were placed in four ozone fumigation treatments conducted 

within separate geodesic glasshouses (dimensions 3m D ⨉ 2.1m H; Solardome 

Industries Ltd, Unit 4, Yeomans Ind Park, Nursling, UK) at Abergwyngregyn (53.23°N, 

-4.02°W). The computer-controlled injection system (Lab VIEW, version 8.6, National 

Instruments, Austin, Texas, USA) mixed a regulated flow of ozone from an ozone 

generator (Dryden Aqua G11, Edinburgh, UK) attached to an oxygen concentrator 

(Sequal 10, Pure O2, Manchester, UK) with carbon-filtered air. An external fan 

circulated ozone-enriched air into the domes at a total flow rate of two changes per 

minute (m3 min-1) and ozone concentrations in each dome were recorded every 30 

minutes using two ozone analysers with matched calibration (EnviroTech API 400A, St 

Albans, UK). Other environmental conditions in the domes were otherwise 

uncontrolled; temperature, PAR, and relative humidity were automatically measured 

and logged every five minutes.  

3.3.3 Ozone treatments  

Ozone was injected into each dome between ~9 am and 7 pm 5 days per week, to achieve 

a stepped diurnal profile of 20-30 ppbv elevated to the specified concentration during 

day (see Figure 8.1). Daytime levels of ozone in each of the Solardomes were chosen 
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to represent realistic European ozone levels, as shown in Table 3.1. Exposure 

commenced on 7th June 2019 (growth stage 16) and continued until harvest: 90 days for 

Click, and 125 days for Phoenix.  

Cumulative ozone exposure (CEO3) for each treatment was calculated following 

Lombardozzi et al. (2013), such that: 

 

CEO3 (mmol mol-1 h) = [O3] × H × D × 10-3 

 

where [O3] is ozone concentration in mol, H is number of hours, and D number of days. 

 

 

3.3.4 Physiological and environmental sampling 

Physiological and environmental measurements were carried out three times over the 

growing season for Click and four times for Phoenix using four randomly selected 

plants (with the same plants used for seed quality analyses). Each time, net 

photosynthesis rate (Pnet), stomatal conductance (gs), and chlorophyll content of the 

youngest fully expanded leaves were measured between 10am – 4pm daily (with 

sampling randomised over treatments), from three replicates per treatment. A handheld 

Soil Plant Analysis Development (SPAD) meter (CCM 200; Opti-sciences, Hudson, 

New Hampshire, USA) provided a relative measure of chlorophyll content. In addition 

to Pnet and gs, leaf temperature, relative humidity, and Vapour Pressure Deficit (VPD) 

were logged, and trace gas samples were collected over a 20-minute period using a LI-

COR 6400XT (LI-COR Biosciences, Lincoln, Nebraska, USA) using a 2 cm × 3 cm 

LED chamber head. Experimental conditions within the chamber head were set to 400 

ppm CO2, 1000 μmol m-2 s-1 PAR, and 20°C leaf temperature at a 500 mmol sec-1 flow 

rate. A hand-held ThetaProbe (Delta-T Devices Ltd., Cambridge, UK) was used to 

measure soil moisture of the surface soil to 6.5 cm depth, to determine that plants were 

well-watered prior to measurement.  

3.3.5 Seed yield measurements 

Plants were harvested when siliques had completely ripened and dried, and leaves had 

senesced and abscised (90 days after the start of exposure in Click and 125 days in 

Phoenix). This maximised the number of plants that reached seed yield for subsequent 

analysis. Dried siliques were picked and placed into paper envelopes (one raceme per 

Table 3.1. Ozone treatments used to represent spring/ summer ozone 

concentrations by region 

30 ppbv 55 ppbv 80 ppbv 110 ppbv 

Background;  

N. Europe1 

Background;  

S. Europe1 

Elevated;  

N. Europe2 

Elevated;  

S. Europe2 

Background (daytime average) and elevated (daytime average) chronic tropospheric ozone 

concentrations used in the present study. As in 1 Boleti et al., 2020; 2 Pay et al., 2019. N. Europe 

= Northern Europe; S. Europe = Southern Europe.  
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envelope), and number of racemes per plant, number of siliques per raceme, number of 

seed per silique, thousand seed weight, and total seed mass per plant were recorded.  

3.3.6 Seed quality 

Oil, protein, chlorophyll, ash, moisture, and glucosinolate content, and fatty acid 

composition of the harvested seed were determined by Near Infrared (NIR) 

spectroscopic analysis (DA 7250, Perten Instruments AB, SE-126 09 Hägersten, 

Sweden) at John Innes Centre, East Anglia, UK. Micronutrient and macronutrient 

contents (nitrogen, phosphorus, potassium, sulphur, magnesium, N:S Ratio, copper, 

manganese, zinc, boron, and iron) was determined by grain suite analyses by Natural 

Resource Management Centre (Cawood Scientific Limited, Bracknell, Berkshire, UK).  

3.3.7 Statistical analysis 

Data were compiled in Microsoft Excel (Microsoft Corporation, 2018. Microsoft 

Excel), and interrogated in R Studio (Version 1.2.5033, Rstudio Team (2019); Rstudio: 

Integrated Development for R. Rstudio, Inc., Boston, MA, USA). Morphological, 

physiological, and seed quality parameters were tested against fixed factors of cultivar 

and cumulative ozone exposure. After testing for normal distribution and homogeneity 

of variances, curvilinear and linear models with lowest Akaike information criterion 

(AIC) values were used to determine effects of ozone exposure on physiology, 

morphology, and seed yield/ quality within cultivars. Analyses of covariance 

(ANCOVA) were used to explain the effects of cumulative ozone exposure and cultivar. 

Two-sample T-tests on quality parameters were conducted for the highest and lowest 

ozone treatments.  

3.3.8 Economic assessment 

Ozone-induced economic loss was estimated using the four-year UK average (2017-

2020) yield of spring and winter OSR (2.9 and 3.3 t ha-1 respectively), and a yield loss 

derived from our TSW measurements for 80 ppbv and 110 ppbv treatments taking 30 

ppbv as the zero-loss baseline. The 4-year (2017-2020) AHDB average OSR price per 

tonne (466.26 USD) was converted into a value per hectare. In line with industry 

practice, a premium of 1.5% increment above baseline selling price was assumed for 

every 1% oil content above 40% (Federation of Oils, Seeds and Fats Associations Ltd 

(FOSFA) document 26A), as presented in Table 2. 

 

3.4 Results 

3.4.1 Pre-harvest data 

Net photosynthesis (Pnet) significantly decreased with increasing ozone exposure in 

both varieties. However, it decreased to a greater extent (by 53%) in Click, between 30 

and 110 ppbv, than in Phoenix (18% - Figure 3.1a). Pnet dropped more substantially, by 
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67% in Click and 47% in Phoenix, from the commencement of flowering (Day 21 for 

Click corresponding to CEO3 = 0.025 mmol mol-1 h and Day 56 for Phoenix at CEO3 = 

0.049 mmol mol-1 h) in the 110 ppbv treatment. Initial stomatal conductance (gs) in 

Click was twice that of Phoenix at (0.66 and 0.32 mol m-2 s-1 respectively) as shown in 

Figure 3.1b. Similarly, gs significantly decreased with increasing ozone exposure in 

Click, but only weakly in Phoenix. In Click, gs decreased by 77% (from 0.66 to 0.29 

mol m-2 s-1 between 30 and 110 ppbv). Again, gs decreased more once flowering 

commenced under 110 ppbv, by 46% in Phoenix and 70% in Click. Pnet and gs decreased 

more significantly at a lower cumulative exposure in Click than Phoenix. Taken 

together, leaf gas exchange of the spring cultivar Click was more sensitive to ozone 

exposure than the winter cultivar Phoenix.  

 Decreased leaf gas exchange (Pnet and gs) appeared to follow decreases in leaf 

chlorophyll content. Both varieties presented similar linear relationships between Pnet 

and chlorophyll content, and gs and chlorophyll content with lower values in Click than 

Phoenix at 110 ppbv (Figure 3.2a, b). Hence, decreased chlorophyll content (indicative 

of increased senescence) was associated with both Pnet and gs. 

 
Figure 3.1. Net photosynthetic rate (a) and stomatal conductance (b) plotted against cumulative  ozone 

exposure (CEO3) for Click (yellow) and Phoenix (blue). P-values represent ANCOVA outputs. Asterisks 

indicate P <0.05 *, P <0.01 **, P <0.001 ***. Error bars indicate ± SEM, some of which are smaller than 

the symbols denoting ozone treatment. Regression lines are only shown for statistically significant P < 

0.05) relationships; outputs in Table 8.1. Each data point represents an average of measurements logged 

over 20 minutes taken from youngest, fully expanded leaves across 3 replicates. 
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Figure 3.2. Net photosynthetic rate (a) and stomatal conductance (b) plotted against leaf chlorophyll 

content (SPAD units) for Click (yellow) and Phoenix (blue). P-values represent ANCOVA outputs. 

Asterisks indicate P <0.05 *, P <0.01 **, P <0.001 ***. Error bars indicate ± SEM, some of which are 

smaller than the symbols denoting ozone treatment. Regression lines are only shown for statistically 

significant P <0.05) relationships; outputs in Table. Each data point represents an average of 

measurements logged over 20 minutes taken from youngest, fully expanded leaves across 3 replicates. 

 

3.4.2 Chlorophyll content 

Chlorophyll content responded differently to ozone exposure between seeds and 

foliage, and between cultivars (Figure 3.3). As outlined above, leaf chlorophyll content 

in the youngest, fully expanded leaf significantly declined with increasing ozone 

exposure in both varieties, but to a greater extent in Click (83.4% between 30 and 110 

ppbv) than Phoenix (40.8%). By contrast, seed chlorophyll content significantly 

increased with ozone exposure in Click and was 3 times higher under 110 ppbv than 30 

ppbv. Although Phoenix received the highest cumulative exposure, nearly double that 

of Click’s (CEO3 = 0.032 mmol mol-1 h vs 0.017 mmol mol-1 h under the 110 ppbv 

treatment), seed chlorophyll content did not significantly differ, fluctuating between 

6.7-7.9 ppm across all treatments. Taken together, seed, and foliar chlorophyll content 

of Click was more responsive to ozone exposure than Phoenix. 
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Figure 3.3. (a) Leaf chlorophyll content (SPAD units) plotted against cumulative ozone exposure (CEO3). 

Each data point represents an average of measurements logged over 20 minutes taken from youngest, 

fully expanded leaves across 3 replicates. (b) Seed chlorophyll content (n = 4) (NIR analysis) plotted 

against CEO3 for Click (yellow) and Phoenix (blue). P-values represent ANCOVA outputs. Asterisks 

indicate P <0.05 *, P <0.01 **, P <0.001 ***. Error bars indicate ± SEM, some of which are smaller than 

the symbols denoting ozone treatment. Regression lines are only shown for statistically significant P 

<0.05) relationships; outputs in Table 8.1. 

3.4.3 Seed yield and quality 

Thousand seed weight (TSW) was significantly lower in Click, the faster-growing 

spring cultivar, than Phoenix for all treatments (Figure 3.4a). At 30 ppbv of ozone, TSW 

differed by a factor of 2.5 (2.9 g (1000 seeds)-1 vs 7.2 g (1000 seeds)-1) whereas the 

smallest difference (~2.0 g (1000 seeds)-1) between cultivars occurred under exposure 

to 55 ppbv of ozone. TSW significantly decreased with increasing ozone concentration 

in both varieties between 30 and 110 ppbv, by 40% in Phoenix and 20% in Click. TSW 

decreased at the same rate in both varieties between cumulative exposures of ~0.07 

mmol mol-1 h and ~0.11 mmol mol-1 h. Although TSW of Phoenix was more sensitive 

to ozone exposure than Click, TSW remained higher for the winter cultivar under all 

treatments. 

Total seed mass per plant did not significantly differ between cultivars (Figure 

3.4b), as the significantly greater number of racemes per plant in Click (Figure 3.4c) 

compensated for the lower TSW. Total seed mass decreased similarly in both varieties 

with increasing ozone exposure, although the greater cumulative ozone exposure of 

Phoenix decreased seed yield by 44% from 30 ppbv to 80 ppbv. Increased raceme 

number between 55 ppbv and 110 ppbv in Phoenix to some extent ameliorated the 

impact of greater ozone exposure on total seed mass. Although the individual yield 

components (raceme number and TSW) showed differing sensitivity to ozone exposure 

between the two cultivars, total seed mass was similarly sensitive to ozone exposure.  
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Seed quality was much more affected by exposure to ozone in Click than 

Phoenix. The average proportion of oil per seed decreased from 48% to 41% as 

cumulative exposure increased above 0.07 mmol mol-1 h (corresponding to 55 ppbv 

treatment) (Figure 3.5a). Total protein content was inversely proportional to oil content, 

rising from ~18% under 30 ppbv and 55 ppbv to 24% at 110 ppbv (Figure 3.5b). Total 

ash and moisture content significantly increased by 24% and 15% with increasing ozone 

exposure (Figure 6). Greater ozone exposure increased concentrations of four nutrients 

(Figure 6): sulphur increased 46%, with more modest increases in manganese (17%), 

iron and zinc (both 15%). Fatty acid composition, erucic acid, and glucosinolate 

proportions, did not significantly change with increased ozone exposure in Click (Table 

8.2). Although small changes were measured between treatments in Phoenix, 

proportions of key seed quality parameters (oil, protein, ash, moisture, saturated fatty 

acid composition, erucic acid, Glucosinolates, and micronutrients) did not significantly 

differ with increased ozone exposure. Total oil content fell to a minimum of 43% at 55 

Figure 3.4 Thousand seed weight (TSW) (a), total seed mass (b), and raceme number (c) of Click 

(yellow) harvested at 90 days, and Phoenix (blue) harvested at 125 days against cumulative ozone 

exposure (CEO3). P-values represent ANCOVA outputs. Asterisks indicate Asterisks indicate P < 0.05 

*, P < 0.01 **, P < 0.001 ***. Error Error bars indicate ± SEM, some of which are smaller than the 

symbols denoting ozone treatments. Regression lines are only shown for statistically significant P < 

0.05) relationships.  
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ppbv in Phoenix, with little difference between other treatments (Figure 3.5a). In 

contrast, average total protein content initially rose from 18% with a peak of 22% at 80 

ppbv (Figure 3.5b). Overall, Click’s quality parameters largely decreased, while 

Phoenix’s remained unchanged with increasing ozone exposure.  

 

Figure 3.5. Changes in (a) seed oil content, and (b) seed protein content in Click (yellow) harvested at 90 

days, and Phoenix (blue) harvested at 125 days against cumulative ozone exposure (CEO3). Changes 

derived from NIR spectroscopy (John Innes Centre). P-values represent ANCOVA outputs. Asterisks 

indicate P <0.05 *, P <0.01 **, P <0.001 ***. Error bars indicate ± SEM, some of which are smaller than 

the symbols denoting ozone treatment. Regression lines are only shown for statistically significant P 

<0.05) relationships; outputs in Table 8.1. 

 

Figure 3.6. Key macro- and micronutrient changes in spring oilseed rape (cv. Click) between 30 and 110 

ppb chronic ozone exposure, with the t-test significance output shown on the right. Ash, protein, oil and 

moisture changes derived from NIR spectroscopy (John Innes Centre), while iron, zinc, manganese, 

sulphur were derived from a grain suite analysis (NRM). P-values represent ANCOVA outputs. Asterisks 

indicate P <0.05 *, P <0.01 **, P <0.001 ***. Absolute values for quality parameters discussed in both 

varieties are reported in Table 8.1 and 8.2. 



Investigating the responses of Brassica oilseed crops to real-world ozone levels 

52   

3.4.4 Economic Assessment 

When the observed changes in TSW are 

scaled to field-level, Click’s final yield 

decreased from 2.09 t ha-1 at 30 ppbv to 1.84 t 

ha-1 and 1.64 t ha-1 under 80 and 110 ppbv 

respectively (Table 2). Increased TSW and oil 

content (between 30 and 55 ppbv) are not 

statistically significant but represent an 

instability of gross profits with increased 

ozone exposure. More substantial final yield 

losses occurred in Phoenix: from 3.33 t ha-1 at 

30 ppbv to 2.34 t ha-1 and 1.98 t ha-1 under 80 

and 110 ppbv, respectively. The total oil 

content in both varieties was >40% across all 

treatments and would, therefore, still attract 

price premiums. However, premiums would 

fall under increasing exposure in both 

cultivars. Our findings suggest the premium 

would decrease from 12.5% at 30 ppbv to 

7.35% under chronic exposure to 80 ppbv of 

ozone for Click.  The premium would drop 

from 6% at 30 ppbv to ~4% at 55 and 80 ppbv 

for Phoenix. No premium would have been 

paid for Click seed under 110 ppbv, but 

Phoenix’s recovered slightly to 5.8%. Overall, 

the combined losses in seed yield and oil 

content would have led to economic losses of 

up to 30% in Click and 40% in Phoenix 

between 30 and 110 ppbv, with growers’ 

profits narrowing under increasing ozone 

exposure. 

 

3.5 Discussion 

This is the first study to directly compare the 

physiological, morphological, and seed 

quality responses of spring and winter oilseed 

rape (OSR) cultivars to chronic ozone 

exposure and explore the findings within the 

context of industry practice. Most 

importantly, greater ozone exposure 

decreased seed yield and quality in both 

cultivars (Figures 3.3, 3.4, 3.5), despite some 
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evidence of increased raceme number compensating for smaller seed (Figure 3.5c). 

Therefore, our first hypothesis was accepted. However, while oil content significantly 

decreased, and ash, moisture, protein, and micronutrients increased in the spring cultivar 

Click, seed quality of the winter cultivar Phoenix was largely unchanged. Furthermore, 

Click was more physiologically sensitive to ozone exposure than Phoenix, with net 

photosynthetic rate (Pnet), stomatal conductance (gs), relative chlorophyll content and 

biomass accumulation decreasing under lower cumulative exposure; thus, our second 

hypothesis was also partially accepted. Overall, our results support our third hypothesis 

and provide further evidence that shorter-lived cultivars (spring OSR) are more 

sensitive to chronic ozone exposure than longer-lived cultivars (winter OSR) regarding 

quality and physiology. 

 OSR is grown to provide oil for human consumption and oilcake for animal 

fodder. Oilseed composition is closely monitored and controlled to ensure that the oil 

and derived products are fit for consumption. International guidelines from the 

Federation of Oils, Seeds, and Fats Association (FOSFA) stipulates that seeds require a 

minimum of 40% total oil content and 6-10% moisture when received by a crusher 

(FOSFA, 2016). Seeds that fail to meet these FOSFA quality standards may be rejected. 

If loads are accepted, growers then receive a payment premium of 1.5% for every 1% 

increase in oil content above this minimum, with similar penalties as oil content falls 

below 40%. All seed analysed in this study passed the minimum FOSFA standards. 

However, the reduction in oil content in seeds from plants exposed to higher levels of 

ozone, particularly in Click, would result in growers forfeiting the premium payments 

they currently rely on to improve profit margins. For example, the decrease in oil 

content in Click from 48% under European background ozone concentrations of 30 

ppbv to 41% following chronic exposure to 110 ppbv of ozone, typical of hot Southern 

European summers, represents a loss of 12% in premiums. Exposure to 80 ppbv, typical 

of hot Northern European summers, decreased premiums by over a third. For a crop 

such as OSR with very tight profit margins, this represents a high risk for growers. 

Although seed oil content was not affected in the Phoenix, profit from this winter 

cultivar would be substantially lower due to reductions in total seed mass.  

Based on average UK yields and prices for OSR in 2020 (DEFRA, 2020), our 

results suggest that high ozone concentrations (80 and 110 ppbv) could result in a loss 

of between 174.87 and 327.22 USD ha-1 for Click and 501.61 to 665.13 USD ha-1 for 

Phoenix (Table 2), which may deter growers from planting this crop. The ozone-

induced yield changes observed in this study are, therefore, sufficient to cause concern 

for growers in current and projected future climates. Moreover, yield instability of Click 

with increased ozone exposure presents a further risk to OSR growers. OSR yields in 

optimised field trials in UK averaged 3.3 t ha-1 (spring) and 5.6 t ha-1 (winter) between 

2017 and 2020 (AHDB, 2020). However, on-farm yields were substantially lower, 

averaging 2.1 t ha-1 (spring) and 3.3 t ha-1 (winter) over four years (as in Table 2). UK 

OSR farm yield (2017-2020) has fluctuated between 1.8- 2.2 (spring), and 2.7-3.5 t ha-

1 (winter) (Bayer Crop Science, 2020). The ozone-induced yield losses of between 0.3 

and 0.5 t ha-1 (Click) and 1.0 and 1.3 t ha-1 (Phoenix) projected by this study are 
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therefore of real concern. In particular, the losses projected by this study surpass 

previously reported pest- and disease-induced yield and oil losses. For example, Turnip 

yellows virus and cabbage stem flea beetle decreased yields by 10-40% (Stevens et al., 

2008), and 9% (Wynn et al., 2017), respectively. Furthermore, stress-induced yield 

losses may be additive as stresses frequently co-occur (Pullens et al., 2019).  

High seed chlorophyll content is undesirable in food products. Chlorophyll 

oxidises oils and accelerates rancidity thereby reducing shelf life (Onyilagha et al., 

2011), creates a colour that makes the product visually unappealing (Bommarco et al., 

2012), and necessitates additional resources to refine (HGCA, 2003). Oil prices are 

reduced by up to 0.2% t-1 once seed chlorophyll content increases above 20 ppm 

(Bommarco et al., 2012). Moreover, Click and Phoenix are both hybrid cultivars, which 

have half the chlorophyll content of conventionally bred varieties (HGCA, 2003). 

Therefore, while chlorophyll content of all seeds harvested in this study were below the 

20 ppm quality threshold, were the three-fold increases between lowest and highest 

exposures seen in this study to be replicated in older hybrids, seed chlorophyll content 

would cause problems for the refining chain and therefore final market with chronic 

ozone exposures >55 ppbv.  

While ozone stress decreased yield and/or oil content, and therefore income 

from the human food product market, other changes may offer growers increased 

quality in oilseed cake. Protein and micronutrient (specifically iron, manganese, 

sulphur, and zinc) content all rose (Figures 3.4 and 3.5), which may be favourable for 

animal fodder, particularly seed cake (Arrutia et al., 2020). As global demand for animal 

protein is projected to double by 2050 (Westhoek et al., 2011), this may provide an 

unexpected bonus for growers of OSR already supplying the feedstock market or a new 

opportunity for others. OSR protein content currently ranges between 20-35%, and an 

increase of 33.4%, as in our study, would make OSR directly competitive to other high 

protein feedstock. For example, soya averages 45-49% and fava bean 30-36% protein 

(Mattila et al., 2018; Heuzé et al., 2020). However, the concomitant increase in less 

favourable components (moisture, ash, and chlorophyll) and substantial decreases in 

total seed mass may negate any benefit, as in other crops such as soya (Broberg et al., 

2020). 

The two cultivars differed considerably in their ozone sensitivity, which adds to 

a body of evidence of intraspecific differences in ozone sensitivity, such as soya (Bailey 

et al., 2019) and wheat (Pandey et al., 2019). Although selective breeding has favoured 

crops with higher rates of gs (Lu et al., 1998; Roche, 2015) and Pnet (Long et al., 2006; 

Koester et al., 2016), which is correlated with higher yields, such crops risk higher 

cumulative ozone exposure and ozone uptake via stomata. Both gs and Pnet of the fast-

growing spring cultivar (Click) decreased substantially as cumulative exposure 

increased. Click’s photosynthetic declines were correlated with significantly lower 

TSW and seed quality in plants grown under higher ozone concentrations. In contrast, 

the slower-maturing winter cultivar (Phoenix) maintained stomatal conductance and 

photosynthesis under increasing exposure. Hence, increased cumulative exposure over 

a longer growing season decreased carbon allocation, which affected Phoenix’s yields, 

but did not affect quality. Phoenix’s 40% TSW decrease indicates ozone is an invisible 
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threat to OSR, as leaf-level physiological measurements were not a reliable guide to 

seed filling. Despite increased ozone tolerance being attributed to low relative growth 

rates (Franzaring et al., 2000), intraspecific mechanisms are not widely discussed. 

Plants with longer growth cycles may divert more photosynthetic products to protective 

mechanisms than shorter-lived plants, which instead decrease biomass accumulation 

and seed filling (Zhu, 2002; Felzer et al., 2007; Kant et al., 2015). Thus, while this study 

presents differential ozone sensitivity between two OSR varieties, further study is 

warranted to identify varieties that may exhibit heritable ozone tolerance in OSR. 

Moreover, the effects of other environmental and phenological variables need further 

investigation, as this study grew plants in pots in a single soil type under glasshouse 

conditions for a shorter duration than in the field. Despite such uncertainties, the 

economic penalties presented here highlight the importance of further investigation of 

the effects ozone alongside other abiotic stresses, nutrient application, and different soil 

types.  

Ozone is well-documented to accelerate leaf senescence (Miller et al., 1999; 

Franzaring et al., 2000; Yendrek et al., 2017). Ozone induces elicitor signalling to plant 

cell nuclei, which upregulates senescence-associated genes and antioxidants, and 

downregulates Pnet-associated genes, which decreases rubisco and chlorophyll synthesis 

(Pell et al., 1997; Yendrek et al., 2015; Grulke & Heath, 2020). This contributes to re-

mobilisation and re-assimilation of nutrients from leaves to seeds, hence decreasing 

foliar (Calatayud et al., 2004) and increasing seed chlorophyll content (Masclaux-

Daubresse et al., 2010). Such nutrient remobilisation is particularly concerning, as OSR 

typically has a low nitrogen use efficiency, with only half of absorbed nitrogen being 

present in harvested seeds (Schjoerring et al., 1995). Therefore, exploiting the genotypic 

variation in nutrient remobilisation and delayed senescence may provide an opportunity 

to improve yields and selectively breed ozone tolerant OSR cultivars (Avice & Etienne, 

2014; Girondé et al., 2015). 

3.6 Conclusions  

Our study compares the responses of two European modern OSR cultivars (one spring 

and one winter) to chronic exposure to realistic ozone levels over a growth season and 

adds to mounting evidence of intraspecific differences in yield, seed quality, and 

physiology. Moreover, indications of final yield differences did not manifest in classic 

ozone injury symptoms such as chlorosis and bronzing at earlier growth stages, 

indicating chronic ozone stress poses a hidden threat to the cultivation of OSR. Chronic 

ozone exposure reduced seed quantity and quality at relatively moderate levels of ozone 

(>55 ppbv), resulting in potentially large reductions (of up to 665.13 USD ha-1) in 

selling price, threatening the commercial viability of OSR. With increased background 

and peak concentrations of ozone projected for the near future, our findings provide a 

timely warning for growers and agronomists, and a call to identify and exploit traits 

linked to ozone tolerance in oilseed rape.   
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4. Cultivar and leaf-specific biochemical 

responses to short-term ozone 

exposure in spring and winter oilseed 

rape 
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4.1 Abstract 

Different physiological responses to ozone exposure have previously been observed 

in a shorter-lived spring-sown vs. longer-lived winter-sown oilseed rape (OSR; 

Brassica napus L.) crop. It was postulated that longer-lived cultivars divert more 

photosynthate to biochemical protective mechanisms, such as antioxidants, and 

less to growth when exposed to abiotic stress, which delays senescence. This study 

focuses on ascorbic acid (AsA), a key antioxidant found throughout plant cells 

which has previously been shown to convey tolerance against ozone. Two OSR 

cultivars (the spring-sown cv. Click, and the winter-sown cv. Phoenix) were 

exposed to 12 days’ fumigation at ozone levels comparable to European 

background and peak conditions (~20 ppbv and ~100 ppbv). Leaf gas exchange, 

chlorophyll content, and biochemical markers of oxidative stress and damage as 

well as AsA content were measured at the 2nd, 4th, and 6th nodal positions. While 

total AsA content was higher in Phoenix, its chlorophyll content, leaf area and 

mass declined, likely due to maintained stomatal conductance and therefore ozone 

uptake. Conversely, Click was seemingly ozone tolerant: it avoided high ozone 

uptake via stomatal closure, and leaf area and dry mass was maintained. This 

study provides further insight into whole-plant changes and intraspecific 

sensitivities in ozone tolerance. 
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4.2 Introduction 

Oilseed rape (hereafter OSR) is the second-most important oilseed crop worldwide, 

contributing 12% of total global oilseed harvests (USDA, 2020). However, it is only 

narrowly economically viable due to its high nutrient demands and vulnerability to 

biotic and abiotic stresses relative to other crops (Avice et al., 2014). One abiotic stress 

of increasing interest to agronomists is tropospheric ozone, a phytotoxic air pollutant. 

Occurrences of high tropospheric ozone levels (>80 ppbv) during summer, i.e., main 

growing, months have increased in frequency in the past 50 years (Archibald et al., 

2020). Tropospheric ozone concentrations above ~80 ppbv have been observed to 

accelerate leaf and whole plant senescence (Mills et al., 2018), the endogenous 

developmental process leading to cell death, and characterised by loss of chlorophyll 

(breakdown of chloroplasts), lipid peroxidation, and mobilisation of nutrients to 

younger leaves (Yendrek et al., 2017). Moreover, while developmental senescence 

increases with age, it is sequential and non-linear, rather than age dependent. For 

example, basal OSR leaves at lower nodal positions senesce and abscise along an 

acropetal gradient. If sequential senescence is disrupted due to stress, nutrient use 

efficiency declines, resulting in increased demand and cost of additional fertiliser to 

maintain seed yields (Bouchet et al., 2016; Tewari et al., 2013). Therefore, 

understanding the processes, timing, and impacts of exogenous, here ozone-induced, 

senescence in this crop is of global economic importance to growers and consumers.  

Under natural conditions, senescence is a tightly regulated process resulting in 

the onset of programmed cell death (PCD). This process involves the genetically 

orchestrated degradation of cellular components such as chlorophyll, RNA, DNA, and 

lipid membranes by newly synthesised enzymes. Tropospheric ozone damage occurs 

when ozone enters plants, mostly via stomata, into the apoplastic space where it rapidly 

dissolves and oxidises to form reactive oxygen species (ROS) such as singlet oxygen, 

superoxide, and hydroxyl radicals (Grulke and Heath, 2020). Although exogenous, 

ozone-induced damage is most visibly apparent as a PCD-induced accelerated 

senescence response in crops. Both endogenously- and exogenously induced 

senescence is initiated by key signalling molecules integrated to developmental and age-

dependent pathways. These include hydrogen peroxide (H2O2), a major component of 

the ROS pool (Bieker et al., 2012; Zentgraf et al., 2022). H2O2 is associated with the 

upregulation of senescence-associated pathways and downregulation of photosynthetic 

enzymes and metabolites (Kusaba et al., 2013). This shift in primary metabolic profile 

and transport leads to chlorophyll degradation and hence reduced photosynthesis 

(Mikkelsen et al., 1996). The effects of leaf ageing and ozone are postulated to be 

synergistic (Hoshika et al., 2020), as ozone exposure increases the endogenous ROS 

pool beyond that associated with natural ageing (Pell et al., 1997). These oxidation 

reactions disturb cellular homeostasis and increase the production of ROS which oxidise 

lipid-rich membranes, disrupt photosynthetic pathways, decrease biomass 

accumulation, and ultimately trigger PCD (Sharma et al., 2012).  Enzymatic and non-

enzymatic antioxidants are upregulated to quench ROS by acting as reducing agents or 

free radical scavengers to prevent oxidative damage and PCD (Gill & Tuteja, 2010).  
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ROS concentrations that exceed a plant’s defence mechanisms are referred to as 

‘oxidative stress’ (Pell et al., 1997).   

Ascorbic acid (AsA) is the most ubiquitous non-enzymatic antioxidant and a 

major regulator of oxidative stress responses due to its primary location in the apoplastic 

space (Smirnoff, 2005; Wheeler et al., 1998). Apoplastic AsA is thought to directly 

quench ozone (Hove et al., 2001) and singlet oxygen (Akram et al., 2017). AsA is also 

a redox buffer for enzymatic scavenging of H2O2 in the glutathione-ascorbate cycle (Wu 

et al., 2017). Moreover, AsA is well-known to prevent and modulate foliar senescence, 

and decrease oxidative stress and PCD (Wanatabe et al., 2013; Conklin & Barth, 2004; 

Zhang, 2012). High concentrations of foliar AsA are generally associated with increased 

ozone tolerance during the vegetative stages, evident as maintained gas exchange, 

chlorophyll content, and biomass, and lower markers of oxidative stress and damage 

such as MDA and H2O2 (Chen & Gallie, 2006; Bellini & Tullio, 2019). For example, 

exogenous application of AsA has been shown to decrease lipid peroxidation by as 

much as 60% (Dolatabadian et al., 2008) and prevent stress-induced senescence (Barth 

et al., 2006). The location within organelles and bioavailability of AsA, and the ratio of 

AsA to its oxidised form (dehydroascorbic acid or DHA) are key to its efficacy in 

quenching ROS (Bellini & Tullio, 2019).   

Oilseed rape is sown in two seasonal groupings, with both cultivars harvested 

around August to September in Europe. Spring-sown cultivars have a shorter life cycle 

(4-6 months) and accumulate biomass more rapidly than winter-sown cultivars (8-10 

months). Responses to ozone over the growing season have previously been observed 

to differ between a spring-sown and winter-sown OSR, with winter-sown plants 

maintaining chlorophyll content and physiology over time but at the forfeit of 

comparatively lower seed yield (Roberts et al., 2022). It has been postulated that the 

maintenance of leaf physiology and homeostasis in winter OSR under ozone exposure 

may be due to higher levels of endogenous AsA increasing antioxidant capacity and 

orchestrating developmental transitions (Kotchoni et al., 2009). This may be because 

winter OSR conforms to the optimal defence theory, wherein photosynthate is diverted 

from growth to defensive compounds to protect the most ‘productive’ tissues (McCall 

& Fordyce, 2010; Herms and Mattson, 1992; McKey, 1974; Ohnmeiss and Baldwin, 

2000). The aim of this study was therefore to determine the contribution of AsA to 

cultivar- and leaf age-specific responses to ozone exposure in a winter (cv. Phoenix) 

and spring (cv. Click) OSR cultivar and assess its capability as a marker of ozone 

tolerance in crops. Based on previous findings that winter OSR maintained physiology 

more effectively over increasing ozone exposure compared to spring OSR, (Roberts et 

al., 2022), we therefore hypothesised that: 

i. Total AsA will be higher in the long-lived winter cultivar, B. napus Phoenix, 

than the shorter-lived cultivar, B. napus Click. 

ii. OSR with higher AsA content will better maintain physiological (Fv/Fm, 

Performance Index) and morphological (leaf area, total mass) productivity 

under ozone exposure.  
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iii. Foliar AsA content will increase with nodal position and with increased 

exposure to ozone.  

In this study, the two cultivars were exposed to either ambient (~20 ppbv, i.e. low 

background European summer concentrations) or ~100 ppbv (typical of peak summer 

ozone conditions in central/southern Europe) over a period of 12 days in 1-m3 semi-

controlled environment chambers. This study is novel in measuring acropetal gradients 

in biochemical and physiological responses of spring and winter varieties of OSR to 

short-term exposure ‘real-world’ ozone concentrations, which is key to gain a better-

whole plant understanding of biochemical defences and responses to ozone. 

4.3 Methodology 

4.3.1 Plant cultivation and morphological measurements 

After 7 days dark vernalisation at 2 ˚C, 200 spring (Click) and 200 winter (Phoenix) 

OSR seeds were sown on Dec 28th, 2021, in bedding packs in a 1-m3 sealed chamber 

until germination. Once plants reached two true leaves (GS12), they were transplanted 

to 2 L pots (ø = 14 cm (top), 9.5 cm (base), d = 18.2 cm) in John Innes no. 2. Eighteen 

plants per cultivar were chosen for uniformity in size and leaf number at GS12 (Jan 14th, 

2022) and grown on in the same semi-controlled environments. A 12-hour photoperiod 

(08:00 – 18:00) was applied via growth lamps (Powerstar HQI-BT, 600 W/D daylight, 

OSRAM, Munich, Germany) delivering 450±25 µmol photons m−2 s−1 at canopy height. 

Temperature, relative humidity, and PAR were monitored in each chamber and logged 

every 10 minutes using sensors (RH 2nl-02 Humidity Sensors; Fenwal UUA32J2 2K 

Thermistors; Delta T Devices Quantum Sensor, Cambridge, UK, respectively) attached 

to a GP2 Data logger (Delta T Devices, Cambridge, UK), and did not significantly differ 

between chambers used for experiment. Plants were watered daily at 16:00 by replacing 

the previous 24-hour evapotranspiration losses and were rotated daily within each 

chamber to mitigate potential edge effects. During sampling, the leaves in the 2nd (oldest 

nodal position sampled) 4th, and 6th (youngest sampled) nodal position on the basal 

rosette of each plant were tagged with coloured wool and labelled to track leaf age. 

Morphological, physiological, and biochemical measurements began 21 days after 

sowing into pots i.e. on Feb 12th, 2022, when plants reached development stage GS16 

i.e., with 6 fully unfolded leaves of sufficient size for gas exchange measurements.  

4.3.2 Ozone fumigation 

Plants of each cultivar were placed separately in two sealed 1-m3 chambers which were 

fumigated with ozone to provide low (~20 ppb) and high ozone (100 ppbv) 

concentrations. Other environmental conditions in the chambers were maintained as 

described above. Ozone was generated via a bespoke fumigation system comprising a 

compressed air cylinder and high-voltage ozone generator (Opti Sciences, New 

Hampshire, USA). The flow rate of ozone into each treatment chamber was manually 

controlled at 200 – 300 ml min-1 and checked every 4 hours with in-line gas flow 

monitors. The ozone was mixed with carbon-filtered air, at a flow of 300 ml min-1, in 
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ducts at the top of each chamber via a Teflon Swagelok injection system (Swagelok, 

Ohio, USA). Air was filtered using a scrubber containing charcoal and glass wool. The 

control chambers received only carbon-filtered air, and ozone concentrations fluctuated 

with ambient background conditions, which ranged between 13.4±6.5 ppbv over the 

course of the experiment. Ozone concentrations in the treatment chambers were 

maintained at 102.5±5.3 ppbv for 8 hours per day (09:00–17:00). Fumigation ceased 

overnight and ozone concentrations in the treatment chambers fell to ambient (7.9±7.1 

ppbv) during this time, mirroring real-world conditions. Ozone concentrations were 

manually logged every 10 minutes using an Enviro 600 ozone analyser (Enviro 

Technology Ltd., London Road, Stroud, Gloucestershire, UK).  

Cumulative ozone uptake was calculated following Lombardozzi et al., (2013), 

such that: 

 

𝐶𝑈𝑂3 (𝑚𝑚𝑜𝑙 𝑚𝑜𝑙 −1h 𝑙𝑒𝑎𝑓)  =  [𝑂3] ∙ 𝐻 ∙ 𝐷 ∙ 10−3 ∙ g𝑠 ∙ 1.67 

[Equation 1] 

 

where [𝑂3]  is ozone concentration in mol, 𝐻 is number of hours, and 𝐷  number of 

days, g𝑠  is stomatal conductance measured using LI-COR 6400 XT, and 1.67 is the ratio 

of leaf resistance for ozone to leaf resistance for water vapour. The flow of ozone to the 

treatment chambers was stopped every third day (Days 0, 3, 6, 9, 12) to allow 

measurements to be conducted safely. 

4.3.3 Leaf gas exchange and physiological measurements 

Three replicates of each leaf age for each cultivar and treatment were sampled every 

three days over a 12-day period. Leaf gas exchange was measured with LI-COR 6400 

XT using a 2 cm x 3 cm LED chamber (LI-COR Biosciences, NE, USA). LI-COR 

chamber conditions were set to match growth chamber environmental conditions, i.e., 

400 ppm CO2, 400 µmol m-2 s-1 PAR, 20 °C, and 50% RH. Instantaneous net 

photosynthetic rate (Pnet) and stomatal conductance (gs) were measured following a 

five-minute stabilisation period. Measurements were taken from an area between the 

main vein and leaf edge. The chlorophyll content index (CCI) of the same leaf area was 

measured using an Apogee meter (Apogee, Utah, USA) and Photosystem II operating 

efficiency (Fv/Fm) and Performance Index (PI) were recorded using a pocket-PEA 

chlorophyll fluorimeter (Hansatech Instruments Ltd, King’s Lynn, UK). Non-

destructive morphological measurements of leaf length, width, and leaf area were made 

at the same time as physiological sampling to determine differences in leaf 

development, growth, and visible injury. Whole plant destructive harvests were carried 

out on days 0, 6 and 12, i.e., before, at the mid-point and at the end of ozone exposure 

respectively, with tissue samples taken for subsequent biochemical assays. 

4.3.4 Biochemical analyses: preparation 

Biochemical analysis of the harvested leaf tissue was conducted to determine foliar 

content of AsA, as well as H2O2 and MDA (malondialdehyde) which were used as 
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proxies for total ROS content and lipid peroxidation respectively. 300 mg fresh tissue 

from leaves at the 2nd, 4th and 6th nodal position were collected from each plant harvested 

on Days 0, 6 and 12. Three technical replicates of tissue samples were placed in pierced 

2 ml Eppendorf tubes (Thermo Fisher Scientific, Oxford, UK), totalling 100 mg per 

tube, frozen with liquid nitrogen, and stored at -80°C until biochemical assays were 

carried out which took place within a month of the conclusion of the experiment. Leaf 

tissue AsA content was measured using High Performance Liquid Chromatography 

Mass Spectroscopy (HPLC-MS) as described in Section 4.3.5.  

4.3.5 Biochemical analyses: ascorbic acid (AsA) 

Foliar AsA content was determined as described by Davey et al. (2003). In brief, 100 

mg frozen leaf tissue was freeze-dried (Freeze-dryer Alpha 1-2 Ldplus, Martin Christ 

Gefriertrocknungsanlagen GmbH, Osterode, Germany) for 48 hours in punctured 2 ml 

Eppendorf tubes, and samples were ground at 30 Hz for 4 minutes to a fine powder 

consistency (Retsch MM400 mixer mill; Retsch, Haan, Germany). 20 mg ground leaf 

material was added to 5 ml 4.5% metaphosphoric acid solution (MPA) in 10 ml corning 

tubes. The samples were vortexed for 2 minutes (WhirliMixer, Fisons, Ipswich, UK) 

and centrifuged at 14000 RPM at 4 °C for 10 minutes. 2 ml of the supernatant were 

added to 0.2 ml 2% dithiothreitol (DTT) and samples left to stand in the dark for 2 

hours. Samples were then placed in 3 ml needleless syringes and filtered into 1 ml amber 

glass vials using 0.45 µm syringe filters (Thermo Fisher Scientific, Massachusetts, 

USA). Standards were made at the same time as samples, using 10 mM AsA stock 

solution (Thermo Fisher Scientific, MA, USA).  

The samples were analysed using a HPLC-MS (Dionex, Thermo Fisher 

Scientific, MA, USA). The HPLC column was a C18 150 × 4.6, 5 µm; the mobile 

(isocratic) phase used a 1 ml min-1 flow of 99/0.9/0.1 (by volume) solution of 

water/acetonitrile/formic acid. The temperatures of the column oven and auto-sampler 

were 20 and 10 °C, respectively.  The injection volume of the samples and standards 

was 20 µl, the UV wavelength was 245 nm, and each sample run time was 15 minutes 

overall. AsA concentrations were determined from a calibration curve derived from the 

peak areas of the standards. 

4.3.6 Biochemical analyses: H2O2 and MDA 

A maker of oxidative stress, hydrogen peroxide (H2O2) and damage, malonaldehyde 

(MDA) content were used as measures of oxidative stress and damage respectively. 

Each was determined using standard protocols which are described in detail by Roberts 

et al. (2023). In short, H2O2 was determined by a potassium iodide assay, as described 

by Ovenston and Rees (1950) and Junglee et al. (2014). MDA was determined using a 

TBARS assay, as described in Du et al., 1989. A spectrophotometer (Ultrospec 2100 

pro, Biochrom Ltd., Cambridge, UK), was used to determine absorbance of samples in 

plastic 1.5 ml cuvettes. H2O2 values were determined using a standard calibration curve. 

MDA values were determined using the below equation: 
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𝑛𝑚𝑜𝑙 𝑀𝐷𝐴 𝑔−1𝐹𝑊 =
𝛥𝐴 ∙  3.5 ∙  𝑥 ∙  1000

𝜀 ∙  𝛽 ∙  𝛾
 

[Equation 2] 

 

where: ΔA represents the difference between absorptions at 532 and 600 nm (A532 – 

A600), corrected by deducting ∆A of the blank; β represents length of light path (0.56 

cm); ε represents TBA extinction coefficient (155 mM-1 cm-1); 3.5 is the dilution factor 

from 400 µl extract + 1 ml TBA/TCA solution; x represents the volume of TCA 0.1 % 

used for extraction (1 ml); 𝛾 represents the frozen weight of tissue (0.1 g); 1000 is the 

conversion factor of µmol to nmol (as in Du et al., 1989). 

 

 

4.4 Results 

4.4.1 Leaf gas exchange and cumulative ozone uptake 

Stomatal conductance (gs) was similar between cultivars in control (20 ppbv), but the 

response of gs to ozone significantly differed between cultivars (Figure 4.1a). gs 

declined across all nodal positions in Click under ozone treatment, with the most 

considerable decrease (of 50%) at the 4th and 6th nodal positions. By contrast, while 

average gs tended to be slightly lower under control conditions in Phoenix, gs was better 

maintained in ozone-exposed plants. Similarly, there was a significant acropetal 

gradient, with gs increasing in Click leaves with increased nodal position by a factor of 

two under control conditions, and by between 25 and 40% between the 2nd, 4th, and 6th 

nodal positions under 100 ppbv.   

Net photosynthetic rate (Pnet) was statistically similar between cultivars 

regardless of ozone treatment (Figure 4.1b). Despite declines in gs in ozone-exposed 

leaves, Pnet was maintained in Click, with only slight reductions of 15% seen at the 2nd 

nodal position. Pnet was also maintained in Phoenix, with a slight increase of 13% in 

ozone-exposed leaves at the 6th nodal position. Pnet displayed a significant acropetal 

gradient, with Pnet increasing by 30 – 60% with increased nodal position. Overall, the 

two cultivars had a similar absolute Pnet which similarly increased with ascending nodal 

position and was not affected by ozone.  

The relationship between Pnet and gs (intrinsic water use efficiency, iWUE) in 

the two cultivars were statistically similar (Figure 4.1c). Pnet generally increased with 

gs to a maximum photosynthetic rate of 15.0 µmol m-2 s-1 at ~0.8 mol m-2 s-1 in both 

varieties. Each leaf nodal position occupied a discrete position on the Pnet-gs relationship 

(P <0.001), irrespective of ozone treatment (P = 0.61), with Pnet and gs in the 2nd 

internodal position reaching only ~50% of the maximum. Although ozone exposed 

plants tended to have lower iWUE at the 6th nodal position in both cultivars, regression 

coefficients (z-statistic) for iWUE were not significantly different between ozone-

treated and control plants in either cv. Click (P = 0.07) or Phoenix (P = 0.30). In 

summary, while the interaction between leaf nodal position and both Pnet and gs is 
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significant, both cultivars presented a similar physiological response to ozone regarding 

iWUE.  

Cumulative ozone uptake (CUO3) was significantly higher in Phoenix than in 

Click, particularly at the highest nodal positions, due to its maintained gs (Figure 4.2). 

CUO3 was similar between cultivars for the control group, with CUO3 increasing with 

ascending nodal position. However, while CUO3 doubled between the 2nd and 4th leaf 

and increased by 25% between the 4th and 6th nodal positions under ozone in Click, 

four-fold and two-fold increases were observed between the 2nd and 4th, and 4th and 6th 

leaves in Phoenix. Leaves at the 6th nodal position had the highest ozone uptake, and 

CUO3 was five times higher in Phoenix than Click. Overall, Phoenix had the highest 

CUO3, with both cultivars showing an acropetal gradient.   
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Figure 4.1. Error plots of average a) net photosynthetic rate and b) stomatal conductance 

in OSR cv. Click and Phoenix at three nodal positions under control conditions (ambient 

ozone at ~20 ppbv) and 100 ppbv ozone exposure after 12 days’ treatment (n = 3); ±SEM. 

c) Scatter plots showing iWUE in OSR cv. Click and Phoenix at three nodal positions 

under control conditions (ambient ozone at ~20 ppbv, denoted by circular symbols) and 

100 ppbv (triangle symbols) ozone exposure. 

 



Investigating the responses of Brassica oilseed crops to real-world ozone levels 

66   

 

4.4.2 Chlorophyll content, Fv/Fm, PI 

Chlorophyll content was higher in Click than Phoenix under control conditions and 

tended to increase with ascending leaf nodal position but decrease under exposure to 

ozone (Figure 4.3a). Average chlorophyll content was a third lower in ozone-exposed 

plants at the 2nd and 4th nodal positions in Click, but this was only statistically significant 

at the 4th nodal position. Similarly, chlorophyll content was 15% and 20% lower in the 

ozone-exposed treatments in the 2nd and 4th nodal positions in Phoenix. While 

chlorophyll content was unchanged at the 6th nodal position in Click, it was 24% higher 

in the ozone-exposed plants in Phoenix. The ozone effect on chlorophyll content was 

generally more pronounced in Phoenix, with an increasing chlorophyll gradient with 

ascending nodal positions. 

The average maximum potential quantum efficiency of Photosystem II (Fv/Fm,) 

was statistically similar between cultivars and showed a similar response to ozone 

exposure (Figure 4.3b). Fv/Fm, was substantially (38%) higher after 12 days’ exposure 

to ozone in Click at the 2nd nodal position compared to control leaves. Fv/Fm, was also 

higher (17%) in 2nd nodal leaf in Phoenix, but this was not statistically significant. The 

efficiency of leaves at other nodal positions was unaffected by ozone exposure in both 

cultivars. PSII Performance Index increased with higher nodal positions, but there were 

no significant differences between cultivar, nor was there a pronounced ozone effect 

(Figure 4.3c). Overall, ozone tended to increase Photosystem II maximum potential 

quantum efficiency and PI at the 2nd nodal position only. 

 

Figure 4.2. Cumulative ozone exposure in OSR cv. Click (yellow) and Phoenix (blue) at three nodal 

positions under control conditions (ambient ozone at ~20 ppbv) and 100 ppbv ozone exposure after 

12 days’ treatment (n = 3); ±SEM. 
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4.4.3 Ascorbic acid, reactive oxygen species, lipid peroxidation 

Overall, average ascorbic acid (AsA) content was significantly higher, by ~40-80% 

across all nodal positions in the long-lived winter OSR cultivar, cv. Phoenix, compared 

to the faster-growing cultivar, cv. Click (Figure 4.4a). While AsA increased between 

the 2nd and 6th nodal position in both cultivars, it was highest in the 4th nodal position in 

Phoenix in both treatment and control plants and in Click under ozone treatment.  

However, while average AsA tended to decline in response to ozone exposure in both 

varieties at all nodal positions, the differences were only significant between the 6th 

nodal position in ozone-exposed plants and control in Phoenix in which AsA declined 

by 55%.  

Figure 4.3 Error plots (left) showing a) F
v
/F

m
 and b) Performance Index in OSR cv. Click (yellow) 

and Phoenix (blue) at three nodal positions under control conditions (ambient ozone at ~20 ppbv) 

and 100 ppbv ozone exposure after 12 days’ treatment (n = 3); ±SEM. 
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Like AsA, hydrogen peroxide (H2O2), a major component of the ROS pool and 

used here as an indicator of oxidative stress, was higher in Phoenix than Click, with 

H2O2 content 40-60% higher at each nodal position in control plants (Figure 4.4b). 

Ozone treatment tended to increase H2O2 by ~10-30% at all nodal positions in both 

varieties compared to the control, but not significantly so. For example, average H2O2 

content at the 6th nodal position in Click was a third higher in ozone-exposed leaves 

compared to control. H2O2 concentration also significantly increased with ascending 

leaf nodal positions in both cultivars, by ~0.2 µmol mg-1 FW between each nodal 

position.  

Figure 4.4. Error plots showing average a) Total endogenous ascorbic acid (AsA), b) hydrogen 

peroxide (H2O2), and c) Malonaldehyde (MDA) in OSR cv. Click (yellow) and Phoenix (blue) 

at three nodal positions under control conditions (ambient ozone; ~20 ppbv) and 100 ppbv ozone 

exposure after 12 days’ treatment (n = 3); ±SEM. 
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Malonaldehyde (MDA), an indicator of lipid peroxidation, did not significantly 

differ between cultivars (Figure 4.4c). Furthermore, MDA levels did not follow H2O2 

content, a marker of oxidative stress, nor AsA, an antioxidant, irrespective of cultivar 

and ozone exposure. Moreover, cultivars showed contrasting ozone responses across all 

nodal position, with MDA levels in Click increasing significantly at the 2nd and 6th 

positions but decreasing at the 4th under exposure to ozone, and Phoenix exhibiting the 

exact opposite. The highest MDA levels in Click were observed at the 2nd leaf position, 

wherein MDA levels were 40% higher in ozone-exposed leaves.  

 

4.4.4 Leaf area and shoot mass 

The morphologies of the two cultivars also responded differently to ozone. While leaf 

area was 30% smaller in Click than Phoenix at all nodal positions in the control plants, 

it was maintained under high ozone treatment (Figure 4.5a). However, in Phoenix, leaf 

area was 60% smaller under ozone at the 2nd and 4th nodal positions, but unchanged in 

the 6th leaf. Moreover, there was an acropetal gradient in leaf area in both varieties, 

wherein area increased by 88% (2nd to 4th) and 30% (4th to 6th) in Click and 70% and 

10%, respectively, in Phoenix under control conditions, and similarly, although to a 

lesser extent, in ozone-fumigated plants. Leaf biomass tended to decline by 27-38% in 

the presence of ozone at all nodal positions in Phoenix, while remaining unchanged in 

Click (Figure 4.5b). Total shoot biomass significantly decreased by 21% in Phoenix in 

response to high ozone but was maintained in Click between the two treatments (Table 

8.3). Overall, leaf area and biomass were maintained in Click under elevated ozone 

exposure, whereas both declined in Phoenix.  
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4.5 Discussion 

This study is novel in comparing the non-enzymatic antioxidant ascorbic acid 

(AsA) content in a biennial winter-sown OSR cultivar, B. napus cv. Phoenix, and an 

annual spring-sown cultivar, B. napus cv. Click under exposure to ozone levels 

representative of high Northern Hemisphere summertime concentrations (Archibald et 

al., 2020; Morgan et al, 2006). Multiple studies show high levels of AsA are associated 

with ozone tolerance, and we postulated they may be a relevant marker for differences 

in tolerance between cultivars (Chen and Gallie, 2005; Frei  et al., 2012; Gillespie et al., 

2012; Zhang et al., 2013). We primarily hypothesised that Phoenix would have higher 

AsA levels due to diverting more photosynthate to synthesis of this ubiquitous 

antioxidant as a growth strategy under stress. Total foliar AsA was indeed higher in 

Phoenix than Click across all nodal positions (Figure 4a), confirming our first 

hypothesis.  

We also hypothesised that OSR with higher AsA content will be better able to 

maintain physiological (gs; Pnet; Fv/Fm; Performance Index) and morphological (leaf 

area, total mass) productivity under ozone exposure. Indeed, Phoenix did maintain gas 

exchange (Figure 1a and 1b), chlorophyll content (Figure 3a) and Fv/Fm under elevated 

ozone (Figure 3b). However, Phoenix presented substantial declines in leaf area, and 

Figure 4.5. Error plots (left) showing a) Leaf area at three nodal positions, and b) Dried above 

in OSR cv. Click (yellow) and Phoenix (blue) under control conditions (ambient ozone at 20 

ppbv) and 100 ppbv ozone exposure after 12 days’ treatment (n = 3); ±SEM. 
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Leaf biomass (Figure 5). Conversely, although gs (Figure 1a) and chlorophyll content 

(Figure 3a) declined in Click under high ozone, leaf area and leaf biomass were 

maintained (Figure 5). It is likely the decline in both leaf area and dried mass in Phoenix, 

which  proved contrary to our second hypothesis, reflected the higher CUO3 (Figure 2) 

of this cultivar. The fact that productivity was not maintained despite higher AsA levels 

in Phoenix, supports the optimal growth theory, that Phoenix diverted photosynthate to 

defence rather than growth under ozone stress; however this defence was overwhelmed. 

Conversely, Click’s decline in gs with elevated ozone suggests that the faster-growing 

cultivar avoided stress and damage by limiting ozone uptake via stomatal closure. Such 

an avoidance mechanism may be due to increased stomatal sensitivity to exogenous 

stress (Mansfield & Freer-Smith, 1984; Price et al, 2002) which could potentially be 

exploited in future cultivar development programmes (Faralli et al, 2019). 

We lastly hypothesised that AsA would increase in an acropetal gradient and 

under exposure to ozone but found no clear evidence of this in either cultivar. Instead 

AsA was highest at the middle nodal position (Figure 4a) meaning that our third 

hypothesis was not accepted. This suggests that, in the case of AsA, Phoenix did not 

fully conform to the optimal defence theory, wherein defensive compounds are diverted 

to the most ‘productive’ organs when under abiotic stress. Such productive parts are 

thought to be young, expanding leaf tissues in biennial plants (as in Phoenix), and 

reproductive sites in annual plants (as in Click) (McKey, 1974; Ohnmeiss and Baldwin, 

2000). Alternatively, AsA synthesis may be upregulated in fully expanded leaves due 

to cumulative ozone damage, i.e. as part of an acceleration of senescence (indicated by 

declines in chlorophyll content at lower nodal positions), rather than for prioritisation 

of young tissue protection (McCall & Fordyce, 2010). Moreover, Phoenix’s acropetal 

AsA pattern was seemingly disrupted by ozone (Figure 4a), most likely caused by the 

loss of AsA for directly quenching ozone in the apoplast (Yeoh et al., 2014). Our 

measured declines in AsA at the 6th nodal positions in ozone-treated plants are 

consistent with some previous studies, wherein total endogenous AsA declined with 

ozone exposure in white stonecrop (Castillo & Greppin, 1988), soybean (Guri, 1983), 

and papaya (Yeoh et al., 2014). The small ozone-induced declines measured in this 

study may reflect the net effect of the simultaneous dynamic responses of both AsA 

synthesis and loss via ozone quenching (Akram et al., 2017). Overall, AsA responses 

appear conflicting, with small net responses being measured between leaf nodal 

positions and treatments, and therefore warrant future investigation by taking leaf 

samples during or immediately after fumigaiton. 

Of note was the difference in acropetal chlorophyll gradient between the two 

cultivars, coupled with a pronounced ozone effect (Figure 3a). While foliar chlorophyll 

decline is a marker of endogenous senescence, it is also known to increase as a hormesis 

effect in response to stress (Agathokleous et al., 2019; 2020). Moreover, increased H2O2 

levels (as in Figure 4b) has been shown to stimulate chlorophyll under water deficit 

conditions (Ashraf et al., 2015), and may act similarly in other abiotic stress, thus 

playing a key role as a protective compound/stress conditioning response in the 

hormesis effect (Agathokleous et al., 2020). This is evident here as although ozone-
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induced senescence occurred at the lower nodal positions, there was no decrease in 

chlorophyll content at the 6th nodal position in Click and a marked increase in Phoenix. 

The difference in response between leaf nodal positions, suggest that traditional leaf 

sampling methods (i.e. selecting the youngest fully expanded leaf; as in Roberts et al., 

2022, etc) mask physiological sensitivity to abiotic stress. Specifically, in this study, the 

youngest fully expanded leaf in Phoenix may have been stimulated by ozone at the time 

of sampling, presenting an apparent physiological ozone tolerance that is not observed 

in other leaves.  

The high H2O2 levels in Phoenix were likely driven by high levels of gas 

exchange (Figures 4.4 and 4.1). Increased H2O2 production is a known by-product of 

photosynthesis (Hüve et al., 2015), and the measurements in this study may solely 

reflect this. Moreover, it has been observed that plants may exhibit ozone injury caused 

by increased ROS before lipid peroxidation thus MDA formation (Scandalios, 1997) 

and that appeared to be the case here. High levels of AsA did not prevent oxidative 

damage (MDA) caused by exposure to high real-world ozone levels. The apparent lack 

of relationship between H2O2 and MDA in both cultivars presents H2O2 as a local signal 

in an acropetal gradient, possibly functioning as a signal for preventing oxidative 

damage (Rhee, 2006), or aiding cellular expansion enzymes at higher nodal positions 

(Foyer, 1997; Smirnoff, Nicholas & Arnaud, 2019). Overall, H2O2 is key in leaf 

responses to external factors, blurring the lines between ageing, cell signalling, and 

senescence.  

The high variability shown in some of our observations is most likely due to the 

(lack of) representativeness of using a 6 cm2 portion of a leaf for measurements given 

potential microclimate effects, and this study therefore raises several avenues for further 

research - not only to identify and exploit biochemical and/or physiological ozone 

tolerance but also to improve leaf-level sampling and measurement techniques. 

Extending the duration of similar experiments may produce more pronounced and 

significant results, and importantly show whether final yield would be similarly 

maintained in this laboratory-based study compared to larger glasshouse studies (De 

Bock et al., 2012; Roberts et al., 2022) and under field conditions. Furthermore, 

measuring additional markers of oxidative stress and tolerance, e.g. ascorbate-

glutathione cycle during (rather than after) fumigation may provide further insight into 

OSR’s defence response to real-world ozone exposure and identify a more suitable and 

applicable marker for ozone tolerance than AsA (Örvar and Ellis, 1997; Pasqualini et 

al., 2001; Wu et al., 2017).  

 

4.6 Conclusions 

We quantified the effect of realistic ozone conditions on acropetal gradients in 

physiology and biochemistry in a shorter-lived oilseed rape (OSR) cultivar (spring 

OSR, cv. Click) and longer-lived cultivar (winter OSR, cv. Phoenix) and provide further 

insight into multi-leaf ozone responses. Our results provide evidence that Click is more 

ozone tolerant, i.e. better able to maintain productivity, despite having lower total 
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ascorbic acid (AsA) levels than Phoenix, primarily due to a decline in stomatal 

conductance and therefore lower ozone uptake in Click. Our results indicate that Click 

avoids ozone uptake thus limiting stress and damage whereas Phoenix limits damage 

by diverting photosynthate from growth to defence. We also found AsA to be a 

constituent molecule independent of nodal position in pre-senescent and senescent OSR 

leaves. Although total AsA is not a simple predictor for physiological and 

morphological ozone tolerance in OSR, this study provides a more detailed 

understanding of constituent and leaf-level responses. Furthermore, selection of 

multiple leaves at different nodal positions on the same plant presented findings which 

are contrary to previous studies. Essentially, we find that multiple leaf-level 

measurements are required to understand and identify physiological tolerance which 

may be otherwise masked through hormesis effects. Overall, there is a greater need for 

multiple leaf-level measurements along with the identification and development of 

easily applied ozone tolerance markers to enable growers and breeders to select and 

breed ozone tolerant OSR.  
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5.1 Abstract 

Ozone tolerance is associated with low gas exchange and hence low ozone uptake 

and/or high activity levels of enzymatic antioxidants such as superoxide dismutase 

and ascorbate peroxidase. However, intensive breeding programmes generally 

select for high carbon assimilation and thus high gas exchange rates, suggesting 

they may inadvertently select ozone sensitive cultivars. Here, Brassica cultivars of 

contrasting breeding pedigrees were exposed to typical European ozone levels (20, 

50, 75, 100 ppbv) for 26 days. We measured the impacts on gas exchange, 

biochemical oxidative stress, and the activities of key antioxidant enzymes in two 

canola (B. napus Click and B. rapa Candle) and two non-canola (B. rapa 07224 and 

B. juncea 15127) cultivars. B. rapa 07224 was the most sensitive cultivar, with 

higher oxidative stress and damage, and lower gas exchange and shoot biomass. 

Its canola-grade progeny, B. rapa Candle accumulated less reactive oxygen species, 

maintained gas exchange rates, and even increased its biomass under ozone 

exposure. To quantify ozone tolerance, we developed a relative oxidative stress 

index using normalised levels of antioxidant and oxidative stress markers. Our 

index correlated strongly with observed changes in biomass. Applying this index 

should enable breeders to identify ozone-tolerant varieties and maximise tolerance 

without forfeiting yield.   
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5.2 Introduction 

Brassica oilseed species are a globally important crop, used to produce food, animal 

feed and fuel. There are currently three dominant rapeseed species under cultivation in 

different global regions: B. rapa, B. napus, and B. juncea, with B. rapa considered the 

‘parent’ species of both B. juncea and B. napus, as demonstrated in The Triangle of U 

(as in Xue et al., 2020 and adapted in Figure 1.1, Chapter 1). The three Brassica species. 

Can be readily interbred to produce hybrid species (Lefol et al., 1997; Choudhary et al., 

2000). B. napus is the major oilseed crop globally, with 30 million tonnes cultivated in 

Europe, North America, and Australia in 2021. Both B. juncea and B. rapa are widely 

cultivated in India and Pakistan, while B. napus and B. rapa are grown in China and 

Scandinavia (USDA, 2023). The combined global yield of these Brassica oilseeds is 

~86 million tonnes annually, only 23% of soybean yields but providing the same 

calorific content (USDA, 2023).  

Extensive crop breeding programmes have traditionally selected for 

commercially important rapeseed traits, including high seed yield, oil content and 

quality, to meet strict market regulations (FOFSA, 2016). Moreover, meeting canola-

quality guidelines requires tight control of sowing time, and nutrient, pesticide, and 

fungicide applications, to ensure in-field seed quality. These guidelines further stipulate 

that seeds must reach >40% oil, <2% erucic acid, and <20 ppm chlorophyll content to 

maintain canola-grade status (Bommarco et al., 2012; FOFSA, 2016). However, climate 

change-related abiotic stresses including exposure to ozone (Tripathi and Agrawal, 

2012; Huang et al., 2019; Roberts et al., 2022) can increase the content of undesirable 

compounds such as chlorophyll, erucic acid, and Glucosinolates in seeds. Breeding 

programmes usually select crops with high productivity, and therefore high gas 

exchange, stomatal conductance, and photosynthetic rates (Long et al., 2006; Roche, 

2015), which may also increase their sensitivity to abiotic stresses by increasing water 

loss and uptake of phytotoxic pollutants such as ozone.  

High levels of the secondary pollutant ozone decrease crop yield and quality 

(Mills et al., 2018). Brassica oilseeds are considered moderately sensitive to ozone 

(Mills et al., 2007), with exposure to ozone concentrations of ~100 ppbv over a growing 

season shown to decrease thousand seed weight by 20-40% (Roberts et al. 2022). Once 

taken up via stomata, ozone rapidly dissolves in the apoplastic space, damaging lipid 

membranes and primary metabolic pathways (Grulke and Heath, 2020). These 

oxidation reactions produce reactive oxygen species (ROS), such as superoxide (O2
•-) 

and hydrogen peroxide (H2O2) (Sharma et al., 2012). Oxidative stress occurs when ROS 

production exceeds defensive mechanisms, thereby disrupting gas exchange, and 

decreasing biomass accumulation (Choudhury et al., 2013). Photosynthate may be 

diverted from primary metabolism to secondary metabolism (enzymatic antioxidant 

synthesis), which is encompassed in the optimal defence theory (McKey, 1974). This 

theory states that the most productive plant parts, i.e., young leaf tissue, will have high 

constitutive antioxidant levels, thus conferring biochemical (ozone) tolerance 

(Fagerstrom et al., 1987; McCall and Fordyce, 2010). To prevent oxidative stress, 

enzymatic and non-enzymatic antioxidants produced by the plant decrease ROS, either 
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directly by quenching or indirectly by donating electrons to enzymatic antioxidants 

(Farooq et al., 2019).  

Enzymatic antioxidants, in particular superoxide dismutase (SOD) and 

ascorbate peroxidase (APX), have long been associated with abiotic stress tolerance 

(Giannopolitis and Ries, 1977). SOD is considered a primary enzymatic antioxidant in 

Brassica oilseed crops, initiating a series of reactions by reducing superoxide to H2O2 

(Lee et al., 2003; Jalali-e-Emam et al., 2011). In turn, H2O2 is quenched to water and 

oxygen by other enzymatic antioxidants, of which APX is key. Many abiotic stresses 

such as salinity, cold (Verma et al., 2019), waterlogging, and drought (Su et al., 2021) 

upregulate SOD genes in all three Brassica oilseed lines. Increased SOD and APX 

activity have been associated with decreases in ozone-induced programmed cell death 

(PCD) and promotion of plant growth in Brassicaceae (Lee and Bennett, 1982; Shafi et 

al., 2015; Gill et al., 2015). However, biochemical synthesis of these secondary 

compounds is metabolically costly, as photosynthate may be diverted from biomass 

allocation, reducing yield (Barto and Cipollini, 2005; Wolinska and Berens, 2019). 

While studies have used enzymatic antioxidants as markers of abiotic stress tolerance 

(Fiscus et al., 2005), results are often presented in isolation and are rarely suitable to 

inform crop breeding. Developing and applying a parsimonious numeric scale, a 

“relative oxidative stress index” to directly compare oxidant and antioxidant levels in 

different lines would provide a quantitative measure of ozone tolerance. This would 

enable future breeding programmes to select varieties with greater ozone-tolerance thus 

ensuring growers are able to maximise their profits by cultivating oilseeds that reliably 

provide high-quality edible food products, regardless of environmental conditions. 

Two B. napus cultivars with differing growth rates had contrasting ozone 

sensitivities (Roberts et al., 2022). The cultivar with the shorter lifecycle better 

maintained oilseed yield than the slower-growing cultivar, despite more substantial 

declines in gas exchange and chlorophyll content. However, it was unclear whether this 

difference in physiological sensitivity was due to differences in gas exchange rates and 

hence ozone uptake, or activities of key antioxidants. In the present study, we directly 

compare the physiological, biochemical, and morphological responses across all three 

key Brassica oilseed lines when exposed to agronomically-relevant ozone levels. We 

surmised that the more intensively bred lines likely show increased ozone sensitivity 

due to: (1) higher ozone uptake via the stomata, and (2) lower antioxidative (SOD and 

APX) activity. Our specific hypotheses are that: 

i. Canola-grade cultivars, the result of intensive breeding programmes, will have 

higher stomatal conductance, and therefore ozone uptake, than non-canola-

grade lines. 

ii. Cultivars with higher enzymatic antioxidant (SOD and APX) activity will 

accumulate less ROS due to scavenging and therefore exhibit less oxidative 

damage. 

To test our hypotheses, we measured the impacts of real-world ozone levels on gas 

exchange, oxidative stress and tissue damage, and the activities of key antioxidant 

enzymes SOD and APX in four lines differing in crop improvement pedigree (improved 
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B. napus Click and B. rapa Candle versus non-improved B. juncea 15127 and B. rapa 

07224).  

5.3 Methodology 

5.3.1 Cultivar selection and plant care 

Seeds were donated by Centre for Genetic Resources, The Netherlands (CGN) and 

Deutsche Saatveredelung AG (DSV). Four lines of Brassica oilseeds were sown: two 

advanced canola-grade lines, B. napus Click (developed 2011, Germany; DSV) and B. 

rapa Candle (developed 1973; Canada; CGN); and two traditional cultivar/landrace 

rapeseed lines, B. rapa 07224 and B. juncea 15127 (CGN; both originally collected 

from arable farm stores in Pakistan in 2015 and 2021). 

The four Brassica lines were sown in bedding packs of John Innes no. 2 soil in a 

naturally lit glasshouse on May 8th, 2022. All lines germinated 3 to 6 days later. Single 

plants of uniform size and growth stage (GS12) were transplanted into John Innes no. 2 

soil in 2 L pots (ø = 14 cm (top), 9.5 cm (base), d = 18.2 cm) on May 21st. On June 6th, 

at GS14-15, 9 plants of each line were transferred to each of four 1 m3 independently 

lit and fumigated growth chambers (Figure 8.4) to allow acclimation to the chamber 

light regime of 14-hr light at 321.2±23.2 μmol photons m-2 s-1 (Powerstar HQI-BT, 600 

W/D daylight, OSRAM, Munich, Germany) and temperature (21.2±1.01°C). The 36 

pots per chamber at the start of the experiment were reduced to 32 on June 19th, and 

then to 16 on July 3rd, as plants were harvested for biochemical analyses of leaf tissue. 

Plants were kept well-watered by 100% daily replacement of evapotranspiration losses 

based on pot weight and were rotated within chambers every two days to limit chamber 

effects. Chamber relative humidity, temperature (RH 2nl-02 Humidity Sensors; Fenwal 

UUA32J2 2K Thermistors) and leaf-level PAR (QS2 Quantum Sensors) were 

continuously monitored and recorded using data GP2 loggers (sensors and loggers from 

Delta-T, Cambridge, UK). 

5.3.2 Ozone fumigation system 

Plants were exposed to one of 4 ozone levels for 8 hours per day (09:00-17:00): ambient 

(~20 ppbv), 50 ppbv, 75 ppbv, and 100 ppbv over 26 days. A high-voltage ozone 

generator (Opti Sciences, New Hampshire, USA) was supplied with compressed air, 

filtered using a scrubber containing glass wool, carbon, and a desiccant, at a flow rate 

of 400 cm3 s-1. From the generator, ¼-inch PTFE tubing delivered ozone at the required 

rate to each chamber via needle valves (Swagelok, Ohio, USA). Ozone was mixed with 

external ambient air at the top of each chamber using perforated PTFE tubing and 

circulated at 100 cm3 s-1. Ozone levels were logged at canopy height (30 cm) every 20 

minutes using a PTFE tubing line from each chamber connected to two ozone monitors 

(Model T400 and Enviro 600 ozone analyser, Enviro Technology Services, 

Gloucestershire, UK). Fumigation ceased overnight, reflecting a real-world diurnal 

profile. Fumigation was suspended on days 13 and 26 to allow measurements to be 

conducted safely.  



Chapter 5: Canola Brassica oilseed species are more ozone-tolerant than non-canola counterparts 

Hattie R. Roberts – April 2023   79 

5.3.3 Leaf gas exchange measurements 

Leaf gas exchange was measured on experimental days 0, 13, and 26 from an area 2 cm 

from the main vein on the youngest fully expanded leaf using an automated 

photosynthesis system (LI-COR 6400XT) with a 6-cm2 LED chamber head (LI-COR 

biosciences, Nebraska, USA). LI-COR chamber conditions closely matched growth 

conditions at average canopy height: RH 55%, leaf temperature 23°C, CO2 400 ppm, 

PAR 400 μmol photons m-2 s-1. The flow rate through the chamber head was 300 mmol 

sec-1. Instantaneous measurements were logged once chamber conditions had stabilised 

(5-10 minutes).  Chlorophyll fluorescence Fv/Fm and non-photochemical quenching, 

NPQt, were then collected using a MultiSpeQ 2.0 (PhotosynQ, Minnesota, USA) from 

the same location on the leaf. Leaf area of the sampled leaf, and total leaf area were 

measured using a leaf area meter (LI-COR biosciences, Nebraska, USA). The number 

of leaves per plant, and fresh and dried masses were also recorded.   

5.3.4 Biochemical assay: Leaf tissue sampling and reagent preparation 

Leaf tissue samples were collected following measurements (n = 4 per treatment and 

timepoint) for subsequent analyses of hydrogen peroxide (H2O2; a measure of ROS) and 

malondialdehyde (MDA; a measure of lipid peroxidation) content, and SOD and APX 

activities to monitor changes in oxidative stress, damage, and antioxidant activity. At 

each time, 1g leaf tissue was taken using a 1-cm2 corkborer from an area 2 cm from the 

main vein in the youngest fully expanded leaf on the opposite side of the vein to that 

used for physiological sampling. Tissue samples were placed into punctured 2 ml 

Eppendorf tubes and immediately frozen in liquid nitrogen. Samples were stored at -80 

˚C until analysed, a period of ~8 weeks.  

Each solution required for the biochemical assays detailed below was made in 

autoclaved volumetric flasks with deionised water less than 24 hours before assays were 

performed. Reagents were agitated using a stirrer (Apex Digital Pro hotplate stirrer, 

Apex Scientific, Kwazulu-Natal, South Africa). pH was checked using a pH meter 

(Milwaukee Mi 151, Milwaukee Electronics Kft., Szeged, Hungary), and adjusted using 

1M NaOH or 1M HCl as needed. Reagents and stock solutions were sourced from 

Sigma-Aldrich (Dorset, UK), unless otherwise stated.  

5.3.5 Oxidative stress: Hydrogen peroxide and malondialdehyde 

Thioacetal acid (TCA) at 4°C was added at 1 ml 0.1% to 100 mg frozen leaf tissue in 

1.5 ml Eppendorf tubes. Two sterilised Tungsten carbide beads were added to each 

Eppendorf tube and lids were secured. The samples were ground in batches of 10 for 

three minutes at 30 Hz using an ice-cooled Tungsten carbide bead mill (MM400 mixer 

mill; Retsch, Germany). After grinding, samples were checked for uniform consistency, 

kept at 4 ˚C and centrifuged at 15000 RPM for 30 mins (Jouan CR3i multifunction, 

Thermo Fisher Scientific, MA, USA). Samples were placed on ice in a polystyrene box 

and 400 µl supernatant was aliquoted for each assay. 

Hydrogen peroxide (H2O2) assays were determined using a spectrophotometer 

(Ultrospec 2100 pro, Biochrom Ltd., Cambridge, UK) following the methods initially 
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detailed in Ovenston and Rees (1950) and refined by Junglee et al. (2014). Initially, 

eight standards (each with a technical replicate) ranging from 0 to 400 μmol H2O2 were 

made from a 10 mM H2O2 stock solution. 400 µl supernatant was added to 400 μl 10 

mM potassium phosphate buffer (PPB; pH 7.0; K2HPO4 and KH2PO4) in 1.5 ml opaque 

centrifuge tubes. 800 µl 1 M KI solution was then added to each sample to initiate the 

reaction. Samples and standards were pipetted into separate disposable cuvettes and 

placed in an eight-sample carousel in a UV-spectrophotometer (Ultrospec 2100 pro, 

Biochrom Ltd., Cambridge, UK). A reference sample comprising 400 μl PPB, 400 µl 

TCA, and 800 µl KI was used to zero the spectrophotometer at 360 nm before measuring 

the absorption of standards and samples. Concentrations of H2O2 in the sample solutions 

were calculated by comparing absorbance against a calibration curve derived from 

known standards.  

Lipid peroxidation was deduced from malondialdehyde (MDA) levels, which 

were determined using the thiobarbituric acid (TBA) reactive substances assay 

methodology first described by Buege and Aust (1978) and outlined by Senthilkumar 

et al. (2021). 400 µl supernatant was added to 1 ml 0.5% TBA in 1.5 ml Eppendorf 

tubes with perforated lids. A reference sample was also made with 400 µl TCA and 1 

ml TBA. After closing the Eppendorf tubes, reference and sample tubes were incubated 

for 30 minutes at 80°C in a water bath (Thermo Scientific, MA, USA). After incubation, 

the tubes were immediately put into ice for 5 minutes to stop the heat-initiated reaction. 

The tubes were centrifuged for a further 5 minutes at 15000 rpm at 4°C to form pellets 

of precipitate. The samples were then transferred to disposable cuvettes, as above. The 

reference sample was used to zero the spectrophotometer at 532 nm and at 600 nm. 

Absorbances of samples were then also measured at both wavelengths.  

MDA concentration was calculated using its millimolar extinction coefficient, 

ε, such that the MDA equivalents are: 

 

𝑛𝑚𝑜𝑙 𝑀𝐷𝐴 𝑔−1𝐹𝑊 =
𝛥𝐴 ∙  3.5 ∙  𝑥 ∙  1000

𝜀 ∙  𝛽 ∙  𝛾
 

[Equation 1] 

where: ΔA is the difference between absorptions at 532 and 600 nm (A532 – A600 ), 

corrected by subtracting ∆A of the blank; β is the light path length (0.56 cm); ε is TBA 

extinction coefficient (155 mM-1 cm-1); 3.5 represents the dilution factor from 400 µl 

extract + 1 ml TBA/TCA solution; x is the volume of TCA 0.1 % used for extraction (1 

ml); 𝛾 is the frozen weight used for extraction (0.1 g); 1000 is the conversion factor of 

µmol to nmol (as in Du et al., 1989). 

5.3.6 Antioxidant enzyme activity 

Extraction buffer (1 ml 50 mM PPB and 0.1 mM EDTA) was added to 100 mg leaf 

tissue samples in 1.5 ml Eppendorf tubes. Two technical replicates of each sample were 

taken: 1 ml PPB with pH 7.8 was added to one technical set and used for Bradford and 

SOD assays, and 1 ml PPB at pH 7.0 was added to replicates used in APX assay. The 
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samples were ground, centrifuged and put on ice, as described for H2O2 and MDA 

samples (section 5.3.5).   

Total protein content, needed to quantify SOD and APX activity of samples, was 

determined using the Bradford Assay (1976), which was prepared by mixing 100 mg 

Coomassie Blue G250 (Merck Group, 64293, Germany) with 50 ml 95% ethanol and 

850 ml de-ionised water, before adding 100 ml 85% v.v. phosphoric acid. The solution 

was filtered using Whatman filter paper no. 1 to remove any undissolved Coomassie 

Blue G250. A reference sample of 400 µl 50 mM PPB (pH 7.8) and Bradford Reagent 

was used to zero the spectrophotometer at 595 nm. Samples consisted of 10 µl leaf 

extract, 90 µl extraction buffer, and 900 µl of Bradford reagent, which were combined 

in 1.5 ml Eppendorf tubes and incubated in the dark at 25˚C for 30 minutes, after which 

samples were pipetted into disposable cuvettes. Absorbance was measured at 595 nm. 

Standards were made by replacing supernatant with 7 known concentrations of bovine 

serum albumen (BSA; Merck Group, 64293, Germany) ranging from 0 to 200 µg/ml. 

Total protein content in sample solutions was determined by comparing absorbance 

values against a calibration curve of the BSA standards.  

SOD activity was measured using the inhibition of nitroblue tetrazolium (NBT) 

reduction by superoxide (Giannopolitis and Ries; 1977) with methodology outlined by 

Elavarthi and Martin (2010). A reaction mixture consisting of 2 mM EDTA, 9.9 mM L-

methionine, 0.025% Triton-X100, and 55 µM NBT was added to 100 µl supernatant in 

each of a translucent (Thermo Fisher Scientific, MA, USA) (‘light’ sample), and an 

opaque 2 ml microcentrifuge tube (‘dark’ sample). Reference samples, referred to as 

‘control’ and ‘blank’ respectively, were made by replacing the supernatant with 100 µl 

PPB (50 mM, pH 7.8). The reaction was initiated by adding 20 µl of 1 mM riboflavin. 

The ‘light’ and ‘control’ samples were placed in a polystyrene box illuminated with a 

fluorescent lamp for 10 minutes, while the ‘dark’ and ‘blank’ sample tubes were placed 

in an identical but unlit box. After this, references and samples were immediately 

transferred to the spectrophotometer and absorbance of ‘dark’ and ‘light’ samples 

measured at 560 nm, with the ‘blank’ used to zero the spectrophotometer. SOD activity, 

with one SOD unit representing the amount of SOD inhibiting NBT photoreduction, 

was calculated using the following: 

 

SOD =  
(𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙  – 𝛥𝐴𝑠𝑎𝑚𝑝𝑙𝑒)

𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∙ Ρ
 

[Equation 2] 

where: SOD  is SOD activity in U mg-1 protein; 𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙  is absorbance of ‘control’ 

sample; 𝛥𝐴𝑠𝑎𝑚𝑝𝑙𝑒  is the absorbance of the ‘dark’ sample subtracted from the 

corresponding ‘light’ sample; Ρ is protein content of each sample in mg. 

Ascorbate peroxidase (APX) activity was determined by measuring the rate of 

consumption of ascorbic acid (AsA), as APX uses AsA as a specific electron donor to 

catalyse the decomposition of H2O2 into H2O and O2 (Nakano and Asada 1981; 

Caverzan et al., 2012).  A reaction mixture was made containing 100 µl supernatant, 

600 µl 50 mM potassium phosphate buffer (pH 7.0), 100 µl of 5 mM ascorbate and 100 
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µl of 1 mM EDTA in 1.5 Eppendorf tubes and was pipetted into disposable cuvettes. 

100 µl 20 mM H2O2 was added to initiate the reaction and the sample agitated using a 

mechanical pipette. Absorbances were measured at 290 nm immediately after agitation, 

and again 2 minutes later. A reference sample with the supernatant and H2O2 replaced 

by the extraction buffer was used to zero the spectrophotometer.  APX activity of 

samples was calculated as: 

 

APX =  
(𝐴0 – 𝐴2)

𝜀 ∙  t ∙  Ρ
 

[Equation 3] 

where: APX is APX activity in U mg-1 protein; 𝐴0  is the absorbance of the sample 

immediately after adding H2O2; 𝐴2 is absorbance of the same sample 2 minutes later; ε 

is the ascorbate molar extinction coefficient (2.8 mM-1 cm-1); t is the incubation time; P 

is the protein content in the test sample in mg. 

5.3.7 Biochemical stress intensity index 

We defined a Relative Oxidative Stress Index (rOSI) by adapting phenotypic indices 

used in crop breeding, as described by Fischer and Maurer (1978), and a human-health 

oxidative stress index, after Škrha and Hilgertová (1999). rOSI was calculated using 

values of H2O2, MDA, SOD and APX for each sample normalised against those under 

control conditions., such that: 

 

rOSI = ∑ �̅� (1 −
𝜒𝑠ΑPX + 𝜒𝑠SOD 

𝜒𝑎ΑPX +  𝜒𝑎SOD
) + (1 − (

𝜒𝑠MDA + 𝜒𝑠H2O2 

𝜒𝑎MDA + 𝜒𝑎H2O2
) (∙ −1)) 

[Equation 4] 

where: 𝜒𝑎ΑPX and 𝜒𝑎SOD are the average APX and SOD activity for each genotype 

under ambient conditions (i.e. at an ozone concentration of 20 ppbv); 𝜒𝑠ΑPX  and 

𝜒𝑠SOD  are the observed activities under each stress treatment (50, 70, 100 ppbv); 

𝜒𝑎MDA, 𝜒𝑎H2O2, 𝜒𝑠H2O2, and 𝜒𝑠MDA are the equivalent for MDA and H2O2 content. 

The resulting values lay between -1.0 (low oxidative stress, i.e. highly ozone tolerant) 

and 1.0 (high oxidative stress, i.e. highly ozone sensitive). To account for stress 

intensity and duration these were plotted against cumulative ozone exposure such that: 

 

𝐶𝐸𝑂3 (𝑚𝑚𝑜𝑙 𝑚𝑜𝑙 −1 h) =  [𝑂3] ∙  𝐻 ∙  𝐷 ∙  10−3 

[Equation 5] 

where: [𝑂3] is ozone concentration in mol, 𝐻 is number of hours, and 𝐷  number of 

days (Lombardozzi et al., 2013). 

 

5.3.8 Statistical analysis 

Data was compiled in Microsoft Excel (Microsoft Corporation, USA) and 

analysed/visualised in R Studio (R Foundation for Statistical Computing, Vienna, 

Austria). After testing data for normality (Bartlett test) and homogeneity of variances 
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(Levene’s test), analyses of covariance (ANCOVA) and regression analyses (linear and 

curvilinear models) were used where appropriate to deduce the effects of ozone, time 

point and Brassica line on gas exchange, physiology, morphology, and biochemistry. 

Where regression analyses were used, models with the lowest Akaike’s Information 

Criterion (AIC) value determined model choice. R Package ggplot2 was used to produce 

scatter and faceted bar plots.  

5.4 Results 

5.4.1 Leaf gas exchange 

Gas exchange declined over time and with increasing ozone concentration in all lines, 

but the effect was more pronounced in the non-canola lines, B. rapa 07224 and B. juncea 

15127. For these lines, stomatal conductance (gs) decreased by 90% (Figure 5.1a) and 

net photosynthetic rate (Pnet) by 63% in B. rapa 07224 and 73% in B. juncea 15127 

(Figure 5.1b) under the highest ozone concentration (100 ppbv). Although gas exchange 

also generally declined, though to a lesser extent, in the canola-grade lines, B. napus 

Click and B. rapa Candle, there were notable exceptions at the highest concentration. 

While gs declined by 90% relative to ambient under 75 ppbv, gs was three times higher 

at 100 than 75 ppbv on Day 26 in both lines, suggesting incomplete stomatal closure 

under the highest cumulative exposure (Figure 5.1a and 5.1b). Despite these differences, 

all lines showed a statistically similar relationship between Pnet and gs, indicating similar 

intrinsic water use efficiency (iWUE, the slope of Figure 5.1c).   

Overall, the canola-grade B. rapa Candle had significantly lower average gs and 

Pnet than the non-canola B. rapa 07224 across all timepoints and ozone treatments (P < 

0.01**). Despite its low gas exchange and therefore ozone uptake, maximum quantum 

use efficiency of PSII (Fv/Fm) declined by 17%, and non-photochemical quenching 

(NPQt) increased by three-fold between ambient and 100 ppbv (Table 8.4). By contrast, 

B. rapa 07224 which showed the highest leaf gas exchange, and therefore the highest 

ozone uptake, appeared less physiologically affected than any other line. 
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Figure 5.1 Average (a) stomatal conductance (g
s
) and (b) net photosynthetic rate (P

net
) of canola (B. napus 

Click and B. rapa Candle) and non-canola-grade Brassica cultivars (B. rapa 07224 and B. juncea 15127) after 

0, 13 (shown in Table 8.4) and 26 days of ozone fumigation; n = 4, ±SEM. (c) Relationship between P
net 

plotted 

against g
s
. Symbols represent individual plants and shapes of points show ozone treatment, with lines 

representing intrinsic water use efficiency (iWUE), R2 and P values present linear model outputs showing 

significant relationships. Statistical significance indicated by asterisks such that P <0.05 *, P <0.01 **, P 

<0.001 ***.   
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5.4.2 ROS and lipid peroxidation 

Greater ozone exposure significantly increased H2O2 concentrations (a marker of 

oxidative stress) in all lines, with higher values in the non-canola-grade cultivars. B. 

rapa 07224 presented significantly higher H2O2 levels, with a 30-fold increase by day 

26 under 100 ppbv ozone relative to ambient and a five-fold increase in B. juncea 15127 

but only a three-fold increase in B. rapa Candle (Figure 5.2a). Similar increases were 

observed in B. napus Click across all treatments, whereas 50 ppbv ozone only increased 

H2O2 by 4-fold on day 26 in B. rapa Candle. Overall, ozone treatment significantly 

increased H2O2, with the most substantial increases in B. rapa 07224.  

 Similarly, MDA concentration, a marker of oxidative damage, was significantly 

higher in B. rapa 07224 than other lines (P <0.01** for all lines; Figure 5.2b) with a 

25-fold increase at an exposure of 100 ppbv relative to ambient. The canola-grade 

cultivars presented the lowest MDA levels, with no significant change with either time 

or ozone treatment (Figure 5.2b). MDA levels had a strong positive linear relationship 

with H2O2 in B. rapa 07224, with relatively weaker relationships in B. juncea and B. 

rapa Candle, and no significant relationship in B. napus Click (Figure 5.2c). Overall, 

B. rapa 07224 presented the highest levels of both MDA and H2O2 at the highest ozone 

treatment, indicating that B. rapa 07224 suffered the highest oxidative stress and 

damage levels, caused by increasing ROS levels with increasing ozone exposure.  
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Figure 5.2. Average (a) hydrogen peroxide (H2O2) and (b) malondialdehyde (MDA) concentrations of 

two canola (B. napus Click and B. rapa Candle) and non-canola-grade Brassica cultivars (B. rapa 

07224 and B. juncea 15127) at experimental days 0, 13 (shown in Table 8.4) and 26; n = 4, ±SEM. (c) 

Relationship between H2O2 and MDA, Symbols represent individual plants and shapes of points show 

ozone treatment. R2 and P values present linear model outputs. Statistical significance indicated by 

asterisks such that P <0.05 *, P <0.01 **, P <0.001 ***.   
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5.4.3 Antioxidant enzyme activity 

SOD activity, indicating the rate of formation of H2O2, generally increased in canola-

grade lines with increasing ozone treatment and time. The highest absolute activities, 

however, were observed under 75 ppbv with SOD activity doubling in B. napus Click 

and increasing four-fold in B. rapa Candle relative to ambient (Figure 5.3a). By 

contrast, the non-canola grade lines presented non-linear changes in SOD activity with 

increasing ozone treatment and time. B. rapa 07224 had the highest SOD activity under 

100 ppbv halfway through the experiment (Day 13; Figure 8.), after which activity 

declined by 73%. While SOD activity did not change by Day 13 in B. juncea 15127, 

there was a similar relative decline, of 64%, between Days 13 and 26 under 100 ppbv 

ozone.  

Figure 5.3. Average (a) superoxide dismutase (SOD) and (b) ascorbate peroxidase (APX) activities in 

tissue samples taken from two canola (B. napus Click and B. rapa Candle) and non-canola-grade 

Brassica cultivars (B. rapa 07224 and B. juncea 15127) at experimental days 0, 13 (shown in Table 

8.4) and 26; n = 4, ±SEM. (c) Relationship of APX against SOD activities. Symbols represent individual 

plants and shapes of points show ozone treatment. R2 and P values present linear model outputs. 

Statistical significance indicated by asterisks such that P <0.05 *, P <0.01 **, P <0.001 ***. 
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APX activity, a measure of the rate at which H2O2 is reduced to water, tended to 

be higher in canola-grade lines, with APX activity doubling by Day 26 in B. rapa 

Candle under both 75 and 100 ppbv compared to ambient. The relationship was similar 

for B. napus Click but, as with SOD activity, APX activity was a third lower than in B. 

rapa Candle. APX activity also tracked that of SOD activity in the non-canola cultivars, 

with strong increases by Day 13 followed by large relative declines by Day 26. This 

was most evident in B. rapa 07224, in which APX activity increased three-fold at 100 

ppbv relative to ambient at the mid-point (Table 8.4) before declining by as much as 

two-thirds in all treatments by day 26. APX and SOD activities were significantly 

positively correlated for all lines except B. juncea 15127. 

5.4.4 Relative oxidative stress index (rOSI) 

Despite apparent similarities in physiological and biochemical responses, the relative 

oxidative stress index (rOSI) markedly differed between the four cultivars. Small 

positive increases occurred in both B. juncea 15127 and B. napus Click with rOSI 

reaching 0.04 for B. napus Click and 0.09 for B. juncea 15127 at the highest cumulative 

exposures (~0.020 mmol mol-1 h ozone). However, the two B. rapa cultivars showed 

more extreme and contrasting responses (Figure 5.4), with a strong positive increase of 

0.49 in the non-canola grade B. rapa 07224 at a CEO3 of 0.020 mmol mol-1 h and a 

similar decrease, to −0.31 at ~0.014 mmol mol-1 h, in the canola-grade B. rapa Candle. 

This negative value indicates that antioxidant activity increased in B. rapa Candle with 

increasing CEO3 resulting in less damage from ROS. By contrast, B. rapa 07224 

appears highly ozone sensitive with substantially higher levels of oxidative damage with 

Figure 5.4. Oxidative Stress Index in two canola (B. napus Click and B. rapa Candle) and non-canola-

grade Brassica cultivars (B. rapa 07224 and B. juncea 15127) with increasing cumulative ozone 

exposure under four ozone treatments. Shapes of points show ozone treatment. R
2
 and P values present 

linear model outputs; statistical significance indicated by asterisks such that P <0.05 *, P <0.01 **, P 

<0.001 ***.   
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increasing CEO3. Overall, the lowest absolute rOSI was seen in the canola-grade 

cultivars, B. rapa Candle and B. napus Click. 

Shoot biomass and chlorophyll content 

The different ozone sensitivities identified using rOSI were reflected in plant 

morphology. By Day 26, the non-canola grade cultivars accumulated less shoot mass as 

ozone exposure increased. B. juncea 15127 and B. rapa 07224 plants exposed to 100 

ppbv ozone had 31% and 48% lower dried masses than ambient (Figure 5.5a). Foliar 

chlorophyll content also declined (by 20%) in both non-canola grade lines, suggesting 

foliar chlorosis, a classic ozone injury symptom (Table 8.4). Although shoot biomass 

of the canola-grade B. napus Click also decreased (by 10%) at 100 ppbv ozone relative 

to ambient ozone levels, it increased by 44% in B. rapa Candle. The differences in shoot 

biomass relative to ambient strongly correlated with rOSI, particularly in B. rapa 

cultivars (Figure 5.5b). 

 

Figure 5.5. a) Average shoot biomass in two canola (B. napus Click and B. rapa Candle) and non-

canola-grade Brassica cultivars (B. rapa 07224 and B. juncea 15127).  b) Changes in dried mass relative 

to 20 ppbv vs rOSI. Symbols represent four plants, and shapes of points show ozone treatment. Error 

bars indicate ±SEM, some of which are smaller than the symbols. Regression lines shown for 

statistically significant (P <0.05) linear relationship between dried weight changes and rOSI. 

 



Investigating the responses of Brassica oilseed crops to real-world ozone levels 

90   

5.5 Discussion 

Ozone sensitivity has long been assessed quantitatively, by determining visible injury 

(Melhorn et al., 1991; Paoletti et al., 2022) or final shoot biomass (Reich, 1987; 

Chaudhary, and Rathore, 2021). Here, we develop and demonstrate the relevance of a 

novel parsimonious oxidative stress index (rOSI) that can be used as a quantitative 

indicator of ozone sensitivity. Across canola vs. non-canola cultivars of Brassica 

oilseeds, this biochemical index was correlated with decreased gas exchange, 

chlorophyll content, and shoot biomass of B. rapa 07224 (Figure 5.5; Table 8.4) and 

increased shoot dried mass of B. rapa Candle. Key enzymatic antioxidants prevent 

oxidative damage, with SOD reducing superoxide radical to hydrogen peroxide (H2O2), 

and ascorbate peroxidase (APX) reducing H2O2 to water (Hossain and Asada, 1984). 

These processes act independently of ozone uptake rates, which are dictated by stomatal 

conductance (Brosché et al., 2010). 

In contrast to our first hypothesis, the least selectively bred of the four lines (the 

non-canola grade B. rapa 07224) had the highest stomatal conductance, which resulted 

in the highest ozone uptake into the apoplast of the four cultivars. However, high uptake 

may not fully account for high oxidative damage in B. rapa 07224 – it also had the 

lowest APX and SOD activities at highest ozone treatments (Figure 5.3). By contrast, 

the canola-grade B. rapa (Candle) accumulated the least ROS due to scavenging from 

APX and SOD (Figure 5.3) and therefore had the lowest oxidative damage (Figure 5.2), 

meaning that our second hypothesis, that cultivars with higher enzymatic antioxidant 

activity will accumulate less ROS due to scavenging and therefore exhibit less oxidative 

damage,  was partially accepted. This line also best maintained photosynthetic rate 

relative to ambient due to a combination of low stomatal conductance and high 

enzymatic antioxidant (APX and SOD) activity (Figure 5.1b). This supports the optimal 

defence theory that defensive compounds are highest in the most productive tissues 

which increases plant fitness when under stress (Fagerstrom et al., 1987; McKey, 1974). 

However, the optimal defence theory does not explicitly consider stress avoidance. 

Crops generally avoid (via stomatal closure) or tolerate (via biochemical 

defences) abiotic stresses (Tausz et al., 2007; Wang et al., 2023). By limiting ozone 

uptake via low stomatal conductance (avoidance) and increasing enzymatic antioxidant 

(here APX and SOD) activity (defence), B. rapa Candle effectively combines both 

mechanisms and hence shows least oxidative stress and damage under exposure to real-

world levels of ozone. Indeed, all markers indicate the canola-grade B. rapa Candle was 

the most tolerant cultivar, with a strong negative relative oxidative stress index (rOSI; 

Figure 5. 4) and exposure to ozone stimulating biomass accumulation (Figure 5.5). Thus 

increasing ozone exposure decreased levels of damage by stimulating APX and SOD 

activities, similarly to ozone-tolerant soybean exposed to 65 ppbv ozone for ~60 days 

over two seasons (Chernikova et al., 2000), and spinach under 80 ppbv ozone for 60 

days (Calatayud et al., 2003.  B. rapa Candle therefore presented a possible hormesis 

effect to ozone, with low stress levels (50 ppbv ozone) stimulating antioxidant responses 

and increasing shoot biomass. Similarly ozone levels of 40-70 ppbv, two to three times 

that of ambient, stimulated antioxidant and chlorophyll levels and biomass 
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accumulation in herbaceous annual and perennial plants (Agathokleous et al., 2019a, 

2019b; Agathokleous et al., 2020, Li et al., 2021).  

The lower gas exchange of older cultivars relative to modern cultivars has long 

been thought to increase their tolerance to abiotic stress (Pleijel et al., 2006; Brewster 

et al., 2019; Yadav et al., 2020). This is evident here with the high ozone tolerance of 

B. rapa Candle (developed in 1971) compared to the other canola-grade cultivar B. 

napus Click (developed in 2011). Nevertheless, although rOSI and the increased shoot 

mass of B. rapa Candle indicate tolerance, its absolute shoot biomass and gas exchange 

were less than the other canola-grade cultivar B. napus Click.  

Although ozone stimulated enzyme activity in both non-canola lines, B. rapa 

07224 and B. juncea 15127, at Day 13, further increases in cumulative ozone exposure 

decreased enzyme activity by the end of the experiment (Day 26), suggesting a possible 

toxicity threshold effect. Antioxidant activity decreased in B. rapa 07224 under 75 and 

100 ppbv ozone, corresponding to cumulative ozone exposures >0.014 mmol mol-1
 h 

CEO3, suggesting either damage to antioxidation processes most likely due to denatured 

enzymes (Lee et al., 2003), or that high ozone uptake downregulated biosynthesis 

pathways (Booker et al., 2012). Moreover, APX and SOD activities were not correlated 

in B. juncea 15127, suggesting a lower threshold to ozone stress for SOD and APX 

activities. Similarly, Lee et al. (2003) demonstrated SOD was a primary target of ozone 

in vitro, meaning it was more susceptible to inactivation than ascorbate-glutathione 

cycle enzymes unless severe oxidative stress occurred in plant tissues. Similarly, 

Booker and Fiscus (2005) found that 80 ppbv ozone tended to decrease soybean SOD 

activity, while peroxidases were maintained, with a response like that of APX activity 

in B. juncea in this study. Overall, SOD and APX activities present threshold effects, 

indicating enzymatic sensitivity to ozone in the non-canola lines through possible 

denaturing of enzymes. 

Interestingly, the highest cumulative ozone exposures increased Pnet and gs in 

both canola-grade lines, suggesting incomplete stomatal closure (Figure 5.1a and 5.1b), 

possibly due to “stomatal sluggishness” (Hoshika et al., 2015). Despite lower gas 

exchange and therefore ozone uptake, maximum efficiency of Photosystem II (Fv/Fm) 

declined in B. rapa Candle and non-photochemical quenching (NPQt) increased (Table 

8.4). While this line dissipated excess energy via NPQt compared to other lines, the 

apparent contradiction between performance of Photosystem II and increased shoot 

biomass mass show that observations of the photosystem may not be suitable or 

appropriate indicators of oxidative stress in Brassica species in short-term experiments.  

Currently, B. napus breeding programmes take approximately six years for new 

cultivars to reach recommended lists (Barnes et al., 2016). Routine leaf biochemical 

assays such as those employed in this study could be applied to rapidly identify and 

develop ozone-tolerant canola cultivars, with a standardised oxidative stress index 

allowing high throughput biochemical screening of Brassica oilseed species over 

shorter experimental periods than traditional seasonal yield metrics. Including other 

antioxidants such as catalase, and other enzymes involved in the ascorbate-glutathione 

cycle (Sharma and Davis, 1997), in our oxidative stress index may boost its explanatory 

power but likely at the expense of throughput. Our parsimonious formulation 
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adequately predicted (R2=0.79) shoot biomass accumulation (Figure 5.5b) similarly to 

other stress vs yield predictive models, such as water stress index models used to predict 

yield in wheat (R2<0.84) (Rizza et al., 2004). While multiple studies show that realistic 

ozone concentrations impair modern crop yield and quality (Pleijel et al., 2018; Yadav 

et al., 2020; Tisdale et al., 2021), canola breeding programmes in the Northern 

Hemisphere seldom explicitly account for ozone as a potential stress (Frei, 2015). 

Without any easily applied selection method for ozone tolerance, growers currently risk 

both yield and quality losses from this hidden threat.  

5.6 Conclusions 

Contrary to our hypotheses, a selectively bred canola-grade cultivar, B. rapa Candle, 

had lower gas exchange, and therefore lower ozone uptake, than non-canola-grade lines. 

B. rapa Candle also had higher enzymatic antioxidant (SOD and APX) activity and 

therefore accumulated less ROS due to scavenging and exhibited less oxidative damage. 

Generally, cultivated Brassica varieties were more ozone tolerant than their non-canola 

counterparts to ‘real-world’ ozone conditions. Differences in shoot growth were 

strongly correlated with a novel relative oxidative stress index, developed here by 

adapting similar measures used in human health and crop phenotypic studies. This index 

accurately predicted differences in biomass accumulation in B. rapa, but further testing 

on other stresses, and species is needed before its possible inclusion in breeding 

programmes. However, the greater tolerance of canola-grade cultivars, particularly 

older cultivars, represents an opportunity for breeders and agronomists to exploit the 

diversity of oilseed Brassica biochemical tolerance to safeguard the economic viability 

of this important crop. 
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6. General Discussion and Conclusions 

 

 

This thesis was motivated by the hidden threat that tropospheric ozone poses to globally 

important Brassica oilseed crops. As with many crops, such as soya, the increased 

productivity of modern crop varieties has meant that the currently recommended 

Brassica oilseed cultivars are prone to displaying symptoms of abiotic stress, such as 

accelerated senescence and declines in gas exchange leading to reduced productivity 

(Kalaji et al., 2016). This is because breeders have tended to favour increased stomatal 

conductance, carbon assimilation, and uniformity in advanced cultivars to achieve high 

yields (Digrado et al., 2020; FOFSA, 2016; Lu and Zeiger, 1994). This has led 

inexorably to greater sensitivity to abiotic stresses such as drought, illustrated in 

chlorosis and biomass declines in B. napus, (Ghosh et al., 2001) and relatives, such as 

B. campestris (Tripathi and Agrawal, 2012). However, little attention had been given to 

the effects of tropospheric ozone, although moderate-high levels (>60 ppbv) are known 

to impede yields in other oilseed crops such as soya (McGrath et al., 2015). The main 

aim of this research was to determine how Brassica napus (oilseed rape; OSR) and other 

agriculturally relevant Brassica oilseed species (B. rapa and B. juncea) respond to 

ozone concentrations representative of Northern Hemisphere conditions. To achieve 

this, I combined measurements of gas exchange, chlorophyll content, seed yield and 

quality, biochemical markers of stress, and antioxidant levels and activities in Brassica 

plants (as in Paoletti et al., 2022 and Chaudhary, and Rathore, 2021) exposed to levels 

of ozone between 20 and 110 ppbv, for part or most of their life cycles. This concluding 

chapter summarises the key findings and main achievements of each data chapter and 

discusses the questions which arose from these primary research studies. Avenues of 

further research are also identified.   

6.1 Summary of chapters and key findings  

After identifying key knowledge gaps in the literature, I first decided to investigate how 

‘real-world’ seasonal ozone concentrations impacted two European OSR cultivars of 

differing life cycle lengths. I hypothesised that increasing ozone exposure would 

decrease both seed yield and quality in both cultivars, reflecting biomass loss caused by 

photosynthetic limitation throughout the lifecycle of each cultivar. I also hypothesised 

that these declines would be more pronounced in the short-lived cultivar and would 

occur at lower cumulative exposure due to higher gas exchange. One annual (spring-

sown; cv. Click) and one biennial (winter-sown; cv. Phoenix) were exposed to four 

ozone levels comparable to European summertime concentrations over most of their 

life cycles. I measured physiological changes (stomatal conductance and photosynthetic 

rate) and chlorophyll content during the vegetative and reproductive stages, and seed 

yield (thousand seed weight, TSW) and quality (macro- and micro-nutrients, fatty acid 
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proportions) when plants had fully senesced. With this information, I developed an 

economic model to determine how yield and quality losses may impact growers’ profits.  

Overall, while both cv. Click and Phoenix did indeed present declines in seed yield at 

highest ozone treatments (80 and 110 ppbv), Gas exchange and chlorophyll declined in 

Click at a lower cumulative ozone exposure. Seed quality also decreased in Click: seed 

oil content declined from 49% to 41% with increased cumulative ozone, which 

translates to a substantial economic decline for growers as they are a paid a premium 

for oil content over 41%. However, Click seemingly better maintained seed yield: TSW 

declined twice as much at highest ozone treatments in Phoenix than Click, at 40% and 

20%. Importantly, however, Phoenix conserved gas exchange and chlorophyll content 

even in high ozone treatments, meaning that the impact of ozone was hidden until 

harvest. Overall, I calculated that the losses of yield and quality at the highest ozone 

treatments could lead to sizeable economic declines, at 175–325 USD ha-1 (Click) and 

500–665 USD ha-1, potentially jeopardising OSR production.  However, the different 

cultivar responses may allow breeders to identify ozone tolerance traits for physiology 

and yield in spring and winter OSR, which can be used to produce more ozone-tolerant 

varieties. 

In Chapter 4, I explored why there were more substantial declines in yield in the 

longer-lived OSR cultivar, Phoenix, despite maintenance of gas exchange and 

chlorophyll content. I postulated that Phoenix diverted more of its photosynthate to the 

synthesis of defensive compounds, antioxidants, to protect the most ‘productive’ tissues 

i.e., leaves in longer-lived varieties, as stated in the optimal defence theory. I focussed 

on a key antioxidant, ascorbic acid (AsA), high levels of which are associated with 

ozone tolerance. I postulated that AsA content would be higher in Phoenix than Click, 

and that this increased ascorbic acid would confer physiological tolerance, such as 

maintained gas exchange and chlorophyll content, and morphology (e.g., leaf area and 

shoot biomass). I therefore exposed both Click and Phoenix to background (~20 ppbv) 

and high (100 ppbv) ozone levels for 12 days in sealed semi-controlled environment 

chambers, to investigate the relationship between AsA, physiology, morphology, and 

markers of oxidative stress and damage at three nodal positions, i.e. at three different 

leaf ages, on the plant.  

The key findings from this experiment were that, in contrast to previous studies 

(Chameides, 1989; Frei et al., 2012; Bellini and De Tullio, 2019), AsA does not appear 

to be directly involved in prevention of ozone-induced damage in OSR but does likely 

play a role in the different responses of the two cultivars. My hypothesis was correct 

that AsA was indeed higher in Phoenix than Click, and that Phoenix maintained 

physiology such as gas exchange in younger leaf tissue. However, shoot biomass was 

substantially reduced in Phoenix after 12 days of exposure to 100 ppbv of ozone. 

Therefore, Phoenix partially conformed to the optimal defence theory: it seemingly 

constitutively diverted its photosynthate to AsA in most productive tissues, the leaves, 

which came at a metabolic cost - in this case the loss of leaf area and shoot biomass. By 

contrast, stomatal conductance declined substantially in Click, while it maintained 

biomass, suggesting that Click employed an avoidance strategy which limited ozone 
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uptake, therefore avoiding internal ozone damage, and maintaining physiology and 

therefore biomass.  

High gas exchange (thus high ozone uptake) and high productivity (biomass 

allocation) is favoured in advanced breeding programmes so based on my findings in 

Chapter 4, I hypothesised that intensively-bred canola cultivars would be less tolerant 

to high ozone levels than non-canola (landrace) counterparts. In the experiment 

presented in Chapter 5, I made biochemical, physiological, and morphological 

measurements in two canola-grade cultivars and two non-canola grade cultivars over 

26 days under four ozone levels. I was able to use the biochemical responses I observed 

to develop a novel relative oxidative stress index (rOSI), which encompassed markers 

of stress and defence. 

The key finding from Chapter 5 was that rOSI, my novel metric, correlated with 

changes in productivity, thus providing a biochemical measure of each cultivar’s 

sensitivity to ozone exposure. Unexpectedly, however, the most ozone tolerant cultivar, 

which was best able to maintain biomass, proved to be a canola-grade B. rapa line 

(Candle), indicated by high enzymatic antioxidant activity, while its non-canola-grade 

counterpart B. rapa (07224) was the most ozone sensitive. This was clearly reflected in 

the calculated values of rOSI for the two cultivars, with B. rapa Candle returning a 

strongly negative value and B. rapa 07224 an almost identical positive one. The 

comparative differences in tolerance were caused by a combination of lower stomatal 

conductance (stress avoidance) and high enzymatic antioxidant activity (defence) in B. 

rapa Candle, in contrast to B. rapa 07224 which exhibited, and maintained, the highest 

gas exchange of all the cultivars. rOSI was significantly related to cumulative ozone 

exposure and shoot biomass in all lines and could therefore provide an important 

addition to the assessment of ozone tolerance in high throughput trials during breeding 

programmes. 

 

6.2 Opportunities for further research 

6.2.1 Agronomic practices 

Findings from Chapter 3 prompted key questions regarding agronomic practices, such 

as in-field canopy management. However, as all the experiments used throughout this 

thesis were pot-based, the relevance of my results to in-field effects are  not entirely 

clear due to pot constraints (Poorter et al., 2012a). Some consider the natural 

experimental progression from chamber and glasshouse studies to be the use of a free-

air enrichment facility due to the larger scale and closer representation of in-field 

conditions. However, discerning ozone effects can, and particularly dose-response 

relationships, can be more challenging in such environments due to the limited control 

possible over ozone generation and distribution within the cropping area (Watanabe et 

al., 2013; Paoletti et al., 2017). Despite such challenges, applying the methodologies of 

this Solardome study to a free-air environment would allow comparison of potential 

ozone-induced yield losses and their combinatorial interactions with other key stressors, 
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such as drought, pathogens, e.g. turnip mosaic virus, and pests, e.g. cabbage stem flea 

beetle (Pullens, 2019). Such stresses are already considered imminent risks to OSR 

productivity by growers, agronomists, and breeders (AHDB, 2023; Pullens, 2019) and 

are the subject of on-going research. Ozone, however, remains a hidden threat, one that 

is seldom considered during breeding programmes.  

As I investigated how moderately high ozone exposure affects OSR yield and 

quality over shorter growing periods, it became apparent that another key knowledge 

gap is the ozone sensitivity of  specific OSR growth stages (GS). GS10 (emergence of 

fully expanded leaves) through to GS59 (flower bud emergence) are generally 

considered the most ozone sensitive stages, but this comprises four or nine months of 

growth, depending on whether a spring- or winter-sown cultivar (AHDB, 2023). 

Moreover, these growth stages usually coincide with incidences of high ozone during 

the late spring and summer months in rural Northern Hemisphere agricultural regions 

(Fowler, 2008). Brassica oilseeds are sown in ‘low ozone’ seasons – either late autumn 

(August to October) or early spring (February to March) in the Northern Hemisphere 

(AHDB, 2023; Charters et al., 1996). Based on my observations, I postulate that shifting 

sowing times to ensure later growth stages coincide with low ozone periods may limit 

ozone-induced yield declines. It may be easier to move the sowing time of spring 

cultivars e.g., to January, in projected future, warmer climates, due to the lack of a 

vernalisation requirement to flower, a requirement that may fix the growing times of 

winter OSR. However, photosensitivity, wherein onset growth transitions are triggered 

by daylight exposure and photoperiod, may limit spring OSR sowing to early February 

(AHDB, 2020). Establishing differences in ozone sensitivity between conventional and 

restored hybrids which exploit cytoplasmic male sterility to combine desirable traits 

from a single line, as well as in early- vs. late-sown varieties warrants further study 

(Aksouh et al., 2001).  

6.2.2 Biomass allocation changes in response to ozone  

The primary research study in Chapter 3 gave rise to new research questions, 

particularly why longer-lived OSR Phoenix appeared to have conflicting physiological 

and morphological responses to ozone at highest cumulative exposures, i.e. that Phoenix 

seemingly maintained foliar gas exchange and chlorophyll content, but its yield 

parameters declined, whereas Click showed pronounced reductions in foliar gas 

exchange and chlorophyll but better maintained yield. While the precise cause was 

unclear, I postulated that Phoenix conforms to the optimal defence theory, wherein 

photosynthate is diverted away from biomass accumulation to synthesis of defensive 

compounds, such as antioxidants (Fagerstrom et al., 1987; McKey, 1974). Multiple 

studies have demonstrated that plants respond to stress by protecting the most 

‘productive’ tissues, usually considered the youngest fully expanding or expanding 

leaves in longer-lived (perennial or biannual) plants, and reproductive sites in shorter-

lived annual plants (McCall and Fordyce, 2010; Van Dam et al., 1996). By contrast, 

Click appears to employ and alternative strategy: one of avoidance. By reducing gas 
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exchange by reducing stomatal conductance Click was able to avoid uptake of ozone 

into the apoplast thereby limiting damage and avoiding the need to divert photosynthate. 

The findings of this study also prompt the question of exactly where the carbon 

produced from photosynthesis is allocated, sequestered, or lost. I hypothesise that in 

addition to the production of antioxidants, there may also be carbon “loss” via biogenic 

volatile organic carbon (BVOC) synthesis and emission. This is because BVOCs, 

particularly those associated with peroxidation such as green leaf volatiles, are observed 

to increase in response to abiotic stresses such as high temperature. For example, fatty 

acid- and glucosinolate-derived emissions increased by an order of magnitude at >40°C 

in B. nigra (Kask et al., 2016). Similarly I found in preliminary experiments not 

presented elsewhere that foliar biogenic emissions of monoterpenes and aldehydes were 

a third higher in B. napus Click after 4 weeks’ exposure to 110 ppbv ozone compared 

to 30 ppbv (Figure 6.1). Taken in conjunction with the findings of the diversion of 

photosynthate to defensive compounds by Phoenix presented in Chapter 4, this suggests 

further investigation of carbon allocation and of assimilation is required. Quantifying 

the proportion of carbon diverted from primary to secondary metabolism using methods 

such as stable carbon isotope tracing is needed to improve understanding of whether 

cultivars conform to the optimal defence theory under stress, which may further 

compound yield loss. Such quantification of carbon loss and transitions between 

metabolic processes may aid breeders in identifying individuals or lines that maintain 

yield under high ozone levels.  

In my final research study, described in Chapter 5, I found that the non-canola 

landrace B. rapa 07224 was the most ozone sensitive of the four cultivars considered, 

exhibiting the most substantial declines in biomass under increased ozone exposure. 

This resulted in the biggest increase in my novel quantitative measure of ozone 

sensitivity, rOSI, for this cultivar. Conversely, the canola-grade cultivar B. rapa Candle 

was most tolerant, even exhibiting increases in biomass in response to exposure, which 

was evident in the large negative value returned for rOSI. The results provide evidence 

of B. rapa 07224 and B. rapa Candle employing different defence strategies: B. rapa 

07224 appears to allocate photosynthate to the “productive” tissues of seed, therefore 

attempting to improve genetic fitness by securing future generations (McKey, 1974). 

Conversely, B. rapa Candle appeared to identify leaves with high photosynthetic rates 
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Figure 6.1.Emission rate of foliar BVOC from spring oilseed rape cv. Click under 21 days ozone exposure 

30 ppbv and 110 ppbv a) monoterpenes and b) aldehydes collected over 20 minute intervals. 
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as the most productive tissues, thus conferring tolerance and improving fitness via 

maintaining physiology, i.e. B. rapa Candle diverts its photosynthate to leaf biomass 

accumulation rather than reproductive sites. However, as this was a short-term 

experiment the lines did not produce seed, meaning uncertainty remains regarding 

whether the yield and seed quality of these cultivars are also opposingly impacted by 

ozone, and therefore further study is warranted to quantify biomass partitioning 

throughout the lifecycle of these important oilseed crops. Furthermore, genetic, and 

biochemical control, and indeed respirational cost of transitioning photosynthate from 

primary metabolism (growth) to secondary metabolism (defence) warrants further 

investigation, as the mechanism behind this is poorly understood, and known to be 

further complicated by abiotic stress (Poorter et al., 2012b).  

 

6.2.3 Physiological and gas exchange responses 

As demonstrated in Chapters 4 and 5, avoiding ozone uptake can be achieved through 

decreasing stomatal conductance. Therefore, a key question arising from the findings 

of Chapters 4 and 5 was how the perception, the physiological control, and the uptake 

of ozone influenced a cultivar’s sensitivity to ozone. A major future avenue of research 

should focus on the stomata, as they are the primary entry point of ozone into the 

apoplast. Despite stomata being one of the most-widely studied plant systems, 

substantial knowledge gaps remain regarding perception and responses to ozone, such 

as whether there are different closure thresholds and whether closure strategy is species- 

or cultivar-specific. It is understood that high stomatal conductance, especially if 

maintained in moderately high (>60 ppbv) ozone levels, increases ozone uptake (Bailey 

et al., 2019), and hence the actual dose of this powerful phytotoxin received by plant 

cells and structures. I postulate that stomatal sensitivity/responsiveness, and heritable 

stomatal traits contribute to observed ozone tolerance in some crops (Brosché et al., 

2010). Therefore, identification of the genes involved in the regulation of stomatal 

responses and sensitivity are required to understand the control of ozone flux.  

There is no standard accepted definition of physiological ozone tolerance, 

although various tolerance indicators have been proposed, including the maintained 

performance of Photosystem II (Hoshika et al., 2020) and net photosynthetic rate (Frei 

et al., 2008) under elevated ozone levels. Key photosynthetic components have been 

identified as sensitive to ozone, e.g., Calvin cycle, namely carboxylation of ribulose 

bisphosphate to glycerate-3-phospate via Rubisco (Pell et al., 1992). However, 

elucidating exactly how the  photosynthetic components of Brassica oilseed species are 

impeded requires further interrogation, as efficiency of Photosystem II measurements 

showed high variability during all my experiments. I propose that further leaf-level 

measurements of gas exchange across multiple ozone-exposed Brassica oilseed lines 

should be taken in the future to quantify maximum rate of carboxylation (Vcmax), 

maximum electron transport rate (Jmax), and respiration. Focussing attention on gas 

exchange components will inform dose-response models and may aid in calculating a 

physiologically-relevant phytotoxic ozone dose (as in Emberson et al., 2001).  
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Moreover, direct comparison of inter- and intraspecific responses to ozone would 

facilitate identification of desirable traits, contributing towards breeding ozone tolerant 

crops.  

Other components of Brassica oilseed gas exchange may be ozone-limited, such as 

mesophyll conductance, which is the rate of carbon dioxide diffusion from spongy 

mesophyll layer to inside cell (Evans, 2020). Indeed, ozone has been shown to decrease 

mesophyll conductance in Sebold’s beech (Hoshika et al., 2020) and poplar (Xu et al., 

2019), but not yet in agricultural crops. Decreased mesophyll conductance limits carbon 

dioxide (CO2) movement in the mesophyll, and therefore the fixation rate of ribulose 

bisphosphate via Rubisco declines, which decreases carbon and nitrogen use 

efficiencies. Such declines are critical to Brassica oilseeds, as these crops are already 

considered to have a low nitrogen use efficiency relative to global agricultural crops 

such as wheat and soya, and this is further compounded by ozone-accelerated 

senescence (Avice and Etienne, 2014). Despite this, mesophyll conductance is given 

little attention in studies investigating crop responses to ozone. Therefore, I suggest that 

quantifying key components of mesophyll conductance e.g., CO2 membrane 

permeability (Evans, 2020) would allow quantification of how ozone may limit CO2 

uptake into cells and would further elucidate shifts in carbon and nitrogen balance and 

allocation. 

6.2.4 Biochemical responses and conferring ozone tolerance  

As demonstrated in Chapters 4 and 5, further research is required to quantify the degree 

of ozone and subsequent ROS detoxification by apoplastic antioxidants in different 

species and cultivars (Dai et al., 2018). In the case of AsA, there is added complexity 

as it is an important component of much more extensive constituent enzymatic 

antioxidant systems, such as ascorbate peroxidase regeneration in the ascorbate-

glutathione cycle (Örvar and Ellis, 1997; Pasqualini et al., 2001). Each of these 

enzymatic and non-enzymatic components may play a more important role in defence, 

depending on species, phenology, and ontology. For example, quantifying AsA in 

various redox states (dehydroascorbic acid and monodehydroascorbate, respectively), 

and the reactions with ROS (namely singlet oxygen), and enzymatic activity involved 

in AsA regeneration, may provide further insight into differences in OSR cultivars’ 

ozone tolerance (Akram et al., 2017). This is because there may be shifts or disruptions 

in antioxidant enzyme/substrate efficiencies that also play important roles in this cycle 

(Conklin et al., 2004). Furthermore, as the primary interface of internal ozone is the 

apoplast, further study is also warranted to investigate localised sub-cellular antioxidant 

concentrations (as in Dai et al., 2022). A limitation to the chamber experiments in 

Chapters 4 and 5 were that antioxidant activity could not be determined during ozone 

fumigation for safety reasons; this may be mitigated by fumigating for a short period 

directly before sampling.  

Similarly to biochemical ozone tolerance, the biochemical mechanism of ozone-

induced senescence has not been fully identified, due to its extensive genetic 

orchestration and complexity, and knowledge gaps remain (Yendrek et al., 2017). For 
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example, exactly how changes in both extracellular and intracellular redox homeostasis 

may cause ozone-induced accelerated senescence, both at the leaf-level, and whole-

plant level, is unknown (Wang et al., 2013). Primarily, research is also needed regarding 

reactive oxygen species (ROS) perception and transfer between cellular and organelle 

membranes in ozone-stressed or pre-senescent tissues. For example, reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (or respiratory burst 

oxidase homologues; Rboh) which are bound to cell membranes, also catalyse the 

formation of apoplastic superoxide and play a key role in signal transduction within 

cells. This leads to a similar upregulation of  auxins, ethylene, and therefore stress 

perception (Quartacci et al., 2001). Moreover, there are Arabidopsis mutants such as 

RbohF and RbohD knockout lines are available, to probe NADPH oxidases’ functions 

in ozone tolerance (Morales et al., 2016). 

A further area of future study includes identifying the role of  hydrogen peroxide 

(H2O2) which I observed to increase in an acropetal gradient (Chapter 4) and with 

elevated ozone (Chapter 5), therefore acting as both a molecular signal and ROS. 

Therefore, the question is posed regarding what exactly H2O2 is signalling. I postulate 

that H2O2 is a signal transducer for senescence-associated genes (SAG). Such genes 

may include SAG18, a gene specifically upregulated in the presence of ozone, which is 

one of many genes that promotes anthocyanin production (Agrawal et al., 2021). While 

many previous studies have suggested that AsA conveys ozone tolerance in plants, 

anthocyanins have been seldom investigated in crops in response to ozone but may 

provide a more suitable marker of biochemical stress tolerance (Naing and Kim, 2021). 

This is because foliar anthocyanins act as an antioxidant when plants are under abiotic 

stress (Smirnoff, 2008), and anthocyanin concentrations are known to increase in 

Brassica species under elevated ozone (Naing et al., 2017) and seemingly maintains the 

efficiency of Photosystem II based on correlative evidence (Zhang et al., 2017).  

Additionally, B rapa genes encoding anthocyanin synthesis have been identified, and 

found to be highly conserved, and therefore heritable (Agrawal et al., 2021). Although 

anthocyanins are synthesised and located inside cell vacuoles (rather than the apoplast; 

as shown in Small and Pecket, 1982), they may be considered a suitable intracellular 

marker of ozone stress/tolerance. Thus, further research is warranted to fully understand 

the function of anthocyanins in ozone responses in Brassicaceae and its promise as a 

biochemical marker of tolerance.  

Another major research avenue is the further interrogation of the relative 

oxidative stress index (rOSI) proposed in Chapter 5. Testing efficacy by a) establishing 

common biochemical markers of ozone tolerance in crops, and b) incorporating these 

markers into rOSI is required to explore whether its predictiveness of crop responses 

could be improved with the inclusion of additional factors. Moreover, applying the 

index to other stresses such as drought, or key pests and diseases, and to other species 

as described in Section 6.2.1 is also urgently needed to determine whether rOSI is 

predictive in other contexts, and could therefore provide a universal marker of oxidative 

stress and damage. Additionally, applying rOSI to other Brassica oilseed 

cultivars/species presents an opportunity to compare ozone tolerance directly and 

efficiently across numerous lines and to increase throughput in screening investigations.  
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6.3 Identifying and exploiting ozone tolerance traits 

Based on my research presented throughout this thesis, I strongly recommend that ozone 

be explicitly included as a stress to be considered in breeding programmes to allow 

identification of ozone-tolerant individuals/lines and heritable tolerance traits. Current 

programmes rarely consider tropospheric ozone a stress of priority compared to disease 

and drought (Frei, 2015), despite the substantial yield losses and declines outlined in 

this thesis. Identifying markers of tolerance remains challenging, as traits may be 

controlled by myriad genes which may not be heritable, or expressed (Mathew et al., 

2019). It has been suggested that breeders may turn to older cultivars, which are 

considered more ozone tolerant, due to lower gas exchange rates and thus limited ozone 

uptake, to breed modern varieties (Frenck et al., 2011; Brewster et al., 2019; Yadav et 

al., 2020), but further research is warranted here as there may be productivity penalties. 

Although our findings from the species intercomparison experiment presented in 

Chapter 5, appear to support this, it should be borne in mind that the two canola-grade 

cultivars differed in progenitor species and not just age.  

Interrogation of morphology at different orders of organisation, such as from 

biomass partitioning and yield, to leaf anatomy (e.g., cellular organisation, stomatal 

density, and size), and/or ultrastructure (e.g., arrangement of organelles, size of 

apoplast), under a range of ozone levels, may aid identification of shared morphological 

characteristics in ozone-tolerant plants and facilitate high-throughput phenotyping. 

Such investigation, alongside the measurement of gas exchange and identification of 

the primary and secondary metabolites and antioxidants that respond to ozone-induced 

oxidative stress is required. It is only by an integrated interdisciplinary approach such 

as this that tolerance biomarkers can be determined/developed to enable identification 

of resilient phenotypes that can biochemically/physiologically tolerate moderate-high 

ozone levels. However, as demonstrated in this thesis, such physiological and 

biochemical ozone tolerance may not correlate to maintained yield due to conflicts with 

the optimal defence theory, namely discerning which tissues are prioritised by the 

different cultivars. 

Importantly, a systematic approach to identifying genetic ozone tolerance traits 

(‘genotype’) which translate to observable species traits  (‘phenotype’) is required. 

Desirable genotypic traits are rarely simply detectable or describable, with multiple 

genes making small and cumulative contributions to a phenotype (termed ‘quantitative 

traits’) (Holland et al., 2004). This is important because it suggests the genetic 

upregulation of a combination of genes may be required to confer maintained or 

increased yield under high ozone levels (Mickelbart et al., 2015). Genome-wide 

association studies (GWAS), which may offer an opportunity for crop breeders to 

identify myriad genes that control biomass allocation (Mathew et al., 2019), may 

therefore be required. GWAS would allow identification and exploitation of 

quantitative trait loci which are associated with ozone tolerance in Brassica and 

facilitate linkage mapping (presenting relative locations of genetic markers to each 
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other) between the phenotypic and genetic/biochemical markers, which will aid 

identification and exploitation of cumulative ozone tolerance traits in Brassica oilseeds, 

as previously demonstrated in rice cultivars (Wang et al., 2014). Once tolerance traits 

have been identified, the diversity of OSR and Brassica oilseed breeding methods, such 

as restored hybridisation and introgression offer a promising opportunity to exploit 

ozone tolerance and enable breeders and growers to minimise ozone-induced losses of 

yield or crop quality without forfeiting productivity.  

 

6.4 Conclusions 

This thesis has demonstrated that ozone is a real, substantive, but still hidden, threat to 

Brassica oilseed yield and quality. I provided evidence that ozone-induced losses can 

be substantial, and therefore this abiotic stress needs to be considered in breeding 

programmes. The results from these primary research studies alongside the current body 

of literature led me to conclude that a combination of diversion of photosynthate to the 

synthesis of enzymatic antioxidants (defence), stomatal closure (avoidance), and 

prioritisation of biomass allocation to productive tissues, are required to confer ozone 

tolerance in Brassica oilseeds. Further identification and exploitation of these traits may 

lead to enhanced ozone tolerance in canola cultivars, with an opportunity to exploit 

introgression to transfer tolerance to important Brassica oilseed cultivars. However, the 

biggest challenge will be ensuring biomass allocation to reproductive sites is not 

sacrificed for biochemical defence, to conserve seed yield and quality.  

The most important next steps include determining whether the rOSI presented 

in this thesis is widely applicable and/or whether further variables need to be included 

to enable it to be predictive of final yield across a range of species and stressors. 

Moreover, identifying ozone tolerance traits by determining and aligning biochemical, 

genotypic, and phenotypic data in tolerant lines is needed. Such traits include stomatal 

control, maintaining allocation to reproductive sites, and biochemical defence. 

Incorporating agronomic practices in future experiments, such as altering sowing times 

may allow growers to optimise ozone tolerance of current cultivars in field conditions. 

Overall, this thesis has demonstrated that ozone is a hidden threat to Brassica oilseed 

yield and quality, but the diverse physiological, biochemical, and morphological 

responses in this crop provide an opportunity to safeguard its productivity in high ozone 

climates. 
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8. Appendices 

 

8.1 Appendix 1. Chronic ozone exposure reduces seed yield and quality 

in spring and winter oilseed rape 

 
Figure 8.1. Left: Mean hourly ozone levels over the entire experimental period (7th June to 9th October 

2019). Right: CEO3 (cumulative ozone exposure) calculated as: CEO3 (mmol mol-1 h) = [O3] × H × D × 

10-3 where [O3] is ozone concentration in ppbv, H is number of hours, and D number of days.  Maximum 

CEO3 of each variety and treatment at point of harvest (5th September for Click and 9th October 2019 for 

Phoenix). 

  



Investigating the responses of Brassica oilseed crops to real-world ozone levels 

126   

Table 8.1. Linear model outputs for oilseed rape quantity, quality, and physiological 

parameters. 

Variety Parameter R2 P 

Click 

Physiology 

Pnet 0.51 < 0.001 *** 

gs 0.22 < 0.01 ** 

SPAD 0.73 < 0.001 *** 

Quantity 

TSW 0.78 < 0.01 ** 

Total seed mass 0.42 ns 

Raceme number 0.58 < 0.01 ** 

Siliques per raceme -0.36 ns 

Seeds per silique 0.34 ns 

Quality 

Total oil content 0.65 < 0.001 *** 

Total protein content 0.67 < 0.01 ** 

Total chlorophyll content 0.57 < 0.01 ** 

Moisture 0.58 < 0.01 ** 

Ash 0.61 < 0.01 ** 

Glucosinolate content 0.01 ns 

Erucic acid content 0.23 ns 

Sulphur 0.35 < 0.01 ** 

N:S Ratio -0.03 ns 

Manganese 0.31 < 0.05 * 

Zinc 0.21 < 0.05 * 

Iron 0.18 < 0.05 * 

Phoenix 

Physiology 

Pnet 0.24 < 0.001 *** 

gs 0.01 ns 

SPAD 0.08 < 0.05 * 

Quantity 

TSW 0.85 < 0.001 *** 

Total seed mass 0.42 < 0.05 * 

Raceme number 0.85 < 0.001 *** 

Siliques per raceme -0.37 ns 

Seeds per silique -0.11 ns 

Quality 

Total oil content -0.08 ns 

Total protein content -0.1 ns 

Total chlorophyll content -0.08 ns 

Moisture -0.09 ns 

Ash -0.06 ns 

Glucosinolate content -0.04 ns 

Erucic acid content -0.01 ns 

Sulphur -0.05 ns 

N:S Ratio -0.071 ns 

Manganese 0.2 < 0.05 * 

Zinc -0.07 ns 

Iron -0.07 ns 

±SEM of 4 replicates. Asterisks indicate P<0.05 *, P <0.01 **, P<0.001 ***,  P  > 

0.05 ns (not significant). 

 

Plant physiology and seed quantity presented significant interactions with CEO3 for 

both varieties, with the exceptions of stomatal conductance (gs) in Phoenix and total 

seed mass in Click. The latter can likely be ascribed to a substantial increase in raceme 

number compensating the significant decrease in TSW. Click’s oil content significantly 

dropped with increasing CEO3, while other quality parameters significantly rose, while 

there was no significant change in Phoenix’s quality parameters, apart from Manganese. 

Erucic acid, saturated fatty acid content, and glucosinolate contents did not significantly 

change with increasing CEO3 in either variety. N:S ratio along with other micronutrients 

remained consistent and were above grain suite analysis limits, indicating that plants 

used in this study were not nutrient deficient.  
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Table 8.2. Absolute values of seed quality parameters in 30ppv and 110 ppbv in Click 

(spring oilseed rape) and Phoenix (winter OSR) 

Click’s oil content was significantly lower in 110 ppb, while other quality parameters 

were significantly higher at 110 ppb (Table 8.2). Seed quality did not significantly 

change between lowest and highest ozone treatments in Phoenix. Glucosinolates were 

higher in Phoenix than Click across all treatments, but further study is warranted to 

establish a true effect as glucosinolate variation was high between individual plants. 

Moreover, as Phoenix was sown out of season, therefore may have increased 

Glucosinolates content due to accelerated phenology. 

 

  

Seed 
quality 

parameter variety moisture oil protein ash 
erucic 
acid 

saturated 
FA GSL sulphur N:S ratio manganese zinc iron 

Units   (%) (%) (%) (%) (%) (%) 
(μmol g-

1) % 
 

(mg kg-1) 
(mg kg-

1) 
(mg kg-

1) 

30 ppbv  
Click 

6.3±0.4 
a 

48.1±3.0 
a 

18.0±1.5 
a 

3.1±0.3 
a 

1.9±0.07 
a 

6.0±0.04 
a 

3.6±2.7 
a 

0.2±0.01 
a 

6.2±0.4 
a 

123.3±12.2 
a 

30.4±2.1 
a 

0.6±0.05 
a 

110 ppbv 
7.3  
±0.04b 

40.9 
±0.4 c 

24.1 
±0.5 c 

3.8 
±0.1 c 

1.6 ±0.3 
a 

5.9 ±0.04 
a 

9.3±4.2 
a 

0.3±0.1 
b 

6.8±0.2 
a 

155.7±5.0 
b 

34.5±1.4 
b 

0.7±0.02 
b 

P  < 0.05* < 0.05* < 0.05* < 0.05* ns ns ns < 0.01 ** ns < 0.05* < 0.05* < 0.05* 

30 ppbv  
Phoenix 

6.7  
±0.39ab 

44.0 
±3.5 
ab 

21.7 
±3.1 ab 

3.2 
±0.3 
ab 

1.7 ±0.2 
a 

5.9 ±0.1 
a 

30.4±4.1 
b 

0.6±0.2 
c 

12.5±0.3 
b 88.7±3.2 

c 
36.1±4.6 
b 

0.6±0.04 
ab 

110 ppbv 
6.6  
±0.08ab 

43.9 
±0.9 
b 

22.1 
±1.0 
b 

3.3 
±0.1 
ab 

1.8 ±0.3 
a 

5.8 ±0.04 
a 

34.6±3.1 
b 

0.5±0.05 
c 

11.7 
±0.1 
b 

76.6±3.6 
c 

36.1±4.2 
b 

0.5±0.05 
a 

P  ns ns ns ns ns ns ns ns ns ns ns ns 

±SEM of 4 replicates. Asterisks indicate P<0.05 *, P<0.01 **, P<0.001 ***, P>0.05 ns (not significant). Differing letters indicate differences between and within treatments. Letters denote mean 
discrimination. GSL = Glucosinolates. 
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8.2 Appendix 2. Cultivar and leaf-specific biochemical responses to 

short-term ozone exposure in spring and winter oilseed rape 

 

 

 

Figure 8.2. Two 1-m3 sealed chambers used to fumigate plants ~20 ppbv and 100 ppb ozone for 12 

days. OSR leaves on the basal rosette were tagged: the 2nd , 4th , and 6th leaves numbering from the base 

of the plant were selected for measurements. Environmental parameters: relative humidity (RH), 

temperature, and light monitored throughout experiment ±STD= standard deviation.  

Environmental parameters in each chamber (±STD) 

Chamber RH (%) Temperature (°C) Light (PAR) 

100 ppbv 29.5±1.3 25.7±0.7 291.2±11.8 

~20 ppbv 27.7±1.7 24.8±0.5 296.2±15.5 

T-test output 0.10 (ns) 0.10 (ns) (0.88) ns 

2nd

10 days after unfolding

4th

7 days after unfolding

6th

4 days after unfolding

LAMP LAMP

O3 generator O3 analyser

100 ppbv

Exhaust

~13 ppbv
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Table 8.3. Means of physiological, morphological, and biochemical data of two oilseed 

rape cultivars exposed to ozone at experimental days 0, 6, and 12.  

 

Day Variety Ozone 
Leaf nodal 

position gs Pnet 
Chlorophyll 

content PI Fv/Fm AsA H2O2 MDA Leaf length Leaf area 
Total dried 

mass 

N/A N/A ppbv  mol m-2 s-1 
μmol CO2 m

-2 
s-1 (CCI) N/A N/A µg mg-1 FW 

µmol mg-1 
FW 

nmol mg-1 
FW cm cm2 g 

0 Click control 2 0.37±0.01 9.69±0.49 212.8±7.6 4.10±1.61 0.79 ±0.02 0.67±0.23 0.26±0.04 0.05±0.03 3.93±0.41 18.5±2.2  
0 Click control 4 0.56±0.17 13.66±0.70 251.8±21.5 2.74±0.56 0.80 ±0.01 0.46±0.09 0.39±0.09 0.03±0.01 4.03±0.53 29.4±7.0  
0 Click control 6 0.43±0.14 12.07±1.16 246.4±16.3 3.03±1.23 0.80 ±0.01 1.10±0.28 0.91±0.20 0.03±0.01 4.23±0.39 22.2±4.5  
0 Phoenix control 2 0.25±0.03 8.19±1.80 219.8±11.6 3.36±0.47 0.82 ±0.01 0.96±0.43 0.20±0.05 0.05±0.01 4.17±0.33 27.6±0.4  
0 Phoenix control 4 0.38±0.07 12.80±0.85 249.6±21.9 4.94±1.19 0.82 ±0.00 0.64±0.26 0.52±0.10 0.08±0.01 5.30±1.04 35.1±11.6  
0 Phoenix control 6 0.48±0.11 13.08±1.19 244.1±13.6 5.09±1.12 0.82 ±0.01 1.37±0.17 0.56±0.31 0.05±0.01 4.50±0.76 23.2±7.0  
6 Click 20 2 0.33±0.02 9.27±0.55 191.2±17.5 2.16±0.40 0.61 ±0.09    5.71±0.33 23.7±3.3  
6 Click 20 4 0.67±0.06 15.20±0.79 282.6±21.4 2.81±0.89 0.79 ±0.02    8.73±0.39 49.4±8.2  
6 Click 20 6 0.70±0.07 14.27±0.82 281.2±28.5 2.47±0.92 0.80 ±0.01    8.17±1.31 40.2±3.8  
6 Click 100 2 0.30±0.07 7.69±1.81 173.9±6.7 0.67±0.19 0.67 ±0.03    4.73±0.15 19.8±5.8  
6 Click 100 4 0.34±0.09 10.51±1.20 222.6±14.4 4.03±0.52 0.79 ±0.01    5.63±0.57 36.1±10.6  
6 Click 100 6 0.49±0.14 11.68±1.28 271.6±16.9 3.28±0.39 0.80 ±0.01    7.63±0.98 45.5±7.1  
6 Phoenix 20 2 0.19±0.02 5.38±1.51 174.0±7.8 1.30±1.10 0.40 ±0.23    6.70±0.96 34.0±4.0  
6 Phoenix 20 4 0.39±0.08 11.11±0.21 246.6±3.1 2.42±0.92 0.78 ±0.02    7.70±0.64 60.0±5.7  
6 Phoenix 20 6 0.62±0.07 13.40±0.46 282.3±8.5 2.15±0.89 0.76 ±0.03    8.87±0.42 58.5±12.8  
6 Phoenix 100 2 0.30±0.03 6.26±1.25 181.3±7.2 1.77±0.12 0.74 ±0.01    5.13±0.23 21.7±3.5  
6 Phoenix 100 4 0.48±0.16 11.43±1.11 237.4±12.3 2.84±0.19 0.78 ±0.01    7.30±0.25 37.5±3.1  
6 Phoenix 100 6 0.51±0.01 11.95±0.97 276.2±16.6 3.08±0.08 0.78 ±0.01    8.23±0.93 63.7±9.0  

12 Click 20 2 0.20±0.06 5.71±0.74 223.6±15.3 1.61±0.87 0.59 ±0.11 0.38±0.03 0.22±0.04 0.03±0.01 6.30±0.67 54.0±18.3 15.57 ±0.60 

12 Click 20 4 0.41±0.08 8.00±0.94 330.5±23.1 3.22±0.77 0.80 ±0.01 0.84±0.11 0.59±0.25 0.03±0.01 9.37±0.35 102.4±13.7 15.57 ±0.60 

12 Click 20 6 0.69±0.07 13.65±0.69 340.7±18.7 4.16±0.46 0.80 ±0.02 0.68±0.17 0.67±0.13 0.03±0.01 11.13±1.46 132.3±30.9 15.57 ±0.60 

12 Click 100 2 0.17±0.05 6.26±0.30 172.2±12.4 1.87±1.11 0.82 ±0.03 0.39±0.09 0.24±0.13 0.06±0.02 5.50±0.12 32.1±6.4 15.1 ±0.96 

12 Click 100 4 0.22±0.08 9.6±1.56 236.7±18.2 3.58±1.43 0.80 ±0.01 0.76±0.13 0.65±0.13 0.02±0.01 7.80±0.70 104.8±11.1 15.1 ±0.96 

12 Click 100 6 0.33±0.13 11.6±1.31 344.8±12.6 5.89±1.31 0.81 ±0.01 0.57±0.10 0.90±0.21 0.05±0.01 10.57±0.35 116.0±2.5 15.1 ±0.96 

12 Phoenix 20 2 0.14±0.01 5.88±0.88 202.1±11.2 0.63±0.24 0.66 ±0.06 1.00±0.15 0.47±0.06 0.04±0.01 8.33±0.73 83.0±5.8 18.33 ±0.73 

12 Phoenix 20 4 0.53±0.07 11.78±0.98 276.1±6.9 3.89±1.39 0.78 ±0.02 1.15±0.26 0.94±0.55 0.05±0.01 10.50±0.93 142.5±8.2 18.33 ±0.73 

12 Phoenix 20 6 0.40±0.13 11.57±0.30 259.7±30.5 3.83±0.84 0.81 ±0.02 1.70±0.14 1.31±0.14 0.04±0.01 12.00±0.29 155.6±11.7 18.33 ±0.73 

12 Phoenix 100 2 0.17±0.05 6.66±0.33 169.8±10.5 2.24±0.59 0.77 ±0.02 0.75±0.20 0.57±0.18 0.03±0.01 5.73±0.19 33.9±2.9 14.4 ±1.39 

12 Phoenix 100 4 0.37±0.17 10.93±1.33 220.4±6.7 3.36±0.46 0.76 ±0.02 1.31±0.28 0.92±0.14 0.05±0.01 8.83±0.18 92.3±7.3 14.4 ±1.39 

12 Phoenix 100 6 0.51±0.03 13.09±0.14 321.6±4.5 3.43±0.84 0.79 ±0.01 1.09±0.26 1.38±0.18 0.04±0.01 12.47±0.48 147.1±6.1 14.4 ±1.39 
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Figure 8.3. Heat maps showing Pearson’s correlation between biochemical, physiological, and 

morphological data in response to cumulative ozone uptake. 
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8.3 Appendix 3. Canola-grade cultivars are more ozone-tolerant than 

non-canola counterparts 

 

 

Figure 8.4. Experimental fumigation setup and mean ozone concentrations (ppbv) over 26 days. Arrows 

represent direction of flow in lines. 
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Table 8.4. Physiological, biochemical, and morphological absolute values for four 

Brassica oilseed lines 

 

Line O3 Day CEO3 Pnet gs Fv/Fm NPQt SOD APX MDA H2O2 Protein Chlorophyll Leaf area 
Fresh 
Mass 

Dried 
Mass 

Units ppbv days 
mmol 
mol h 

μmol CO2 
m-2 s-1 

mol m-2 s-1 N/A N/A 
U mg-1 
protein 

U mg-1 
protein 

nmol mg-1 
FW 

µmol mg-1 
FW 

mg g-1 

FW 
SPAD cm2 g g 

B. 
napus 
Click  

20 0 0.00 13.82±0.53 0.69±0.03 0.79±0.01 0.34±0.04 64.71±29.29 8.78±2.05 0.22±0.06 1.74±0.27 0.11±0.04 18.10±1.02 59.73±5.42 4.17±0.78  

20 13 0.00 15.23±2.13 0.36±0.09 0.77±0.01 0.48±0.06 57.56±25.35 6.70±2.83 0.15±0.07 2.13±0.38 0.32±0.14 23.53±0.85 219.67±14.02   

50 13 0.00 10.53±3.79 0.32±0.21 0.77±0.01 0.42±0.04 45.86±8.06 14.88±5.15 0.26±0.05 4.14±0.73 0.17±0.05 28.13±3.30 224.99±8.30   

75 13 0.01 11.57±1.99 0.31±0.14 0.78±<0.01 0.38±0.02 58.79±15.77 22.17±11.05 0.14±0.08 3.52±0.84 0.31±0.11 28.77±4.73 206.76±9.03   

100 13 0.01 11.60±2.41 0.46±0.24 0.78±<0.01 0.36±0.01 50.02±5.55 12.74±2.29 0.29±0.10 6.43±0.70 0.28±0.04 27.33±2.92 188.21±18.76   

20 26 0.00 8.64±1.16 0.32±0.21 0.76±0.01 0.54±0.10 26.93±6.36 6.52±2.24 0.14±0.09 2.41±0.51 0.61±0.14 32.10±2.05 112.71±4.83 99.13±5.63 13.42±0.71 

50 26 0.01 3.99±1.10 0.04±0.01 0.78±<0.01 0.37±0.04 36.66±9.91 4.45±1.18 0.04±0.01 7.35±1.62 0.56±0.18 32.30±5.18 150.18±18.90 85.68±4.91 11.22±0.92 

75 26 0.01 3.72±0.46 0.03±<0.01 0.76 ±0.01 0.51±0.12 54.86±18.25 14.04±1.46 0.04±0.01 7.10±1.41 0.47±0.19 24.05±4.78 143.13±11.69 91.63±2.83 13.78±0.99 

100 26 0.02 6.07±0.81 0.13±0.06 0.76 ±0.01 0.54±0.10 34.09±2.29 17.70±5.15 0.04±<0.01 7.72±1.37 0.48±0.05 24.73±1.13 113.38±13.18 90.50±4.66 12.08±0.26 

B. 
rapa 

Candle 

20 0 0.00 13.63±0.33 0.39±0.05 0.77 ±0.01 0.46±0.06 20.46±5.37 0.60±1.96 0.35±0.17 2.50±0.47 0.50±0.08 9.60±0.72 51.05±7.30 3.01±0.67  

20 13 0.00 14.84±3.20 0.41±0.14 0.77 ±0.01 0.49±0.05 44.45±12.09 8.24±4.24 0.25±0.16 3.29±0.47 0.33±0.13 15.30±1.03 141.12±9.19   

50 13 0.00 10.72±1.55 0.18±0.05 0.77 ±0.01 0.47±0.05 65.18±3.33 14.72±4.41 0.09±0.03 3.73±0.74 0.19±0.02 16.58±1.35 154.5±24.24   

75 13 0.01 5.81±0.95 0.07±0.01 0.68 ±0.07 0.70±0.07 87.06±17.62 20.72±5.78 0.11±0.05 3.66±0.90 0.17±0.03 15.23±0.93 186.75±14.96   

100 13 0.01 8.75±1.64 0.16±0.06 0.77 ±0.01 0.45±0.04 95.65±31.62 32.51±15.00 0.10±0.06 2.58±0.67 0.34±0.20 16.04±1.74 167.67±13.44   

20 26 0.00 5.11±1.43 0.09±0.04 0.75 ±0.02 0.65±0.14 53.53±23.20 12.32±5.71 0.06±0.01 6.49±0.47 0.55±0.23 14.45±1.06 130.38±6.23 59.48±3.09 8.48±0.85 

50 26 0.01 4.56±1.00 0.06±0.02 0.66 ±0.05 1.67±0.64 71.49±26.01 6.84±2.35 0.36±0.19 11.85±3.76 0.31±0.08 12.85±1.89 100.35±12.86 62.55±5.67 9.45±0.82 

75 26 0.01 2.71±0.40 0.04±0.01 0.64 ±0.08 2.34±1.40 110.31±13.61 28.69±6.79 0.07±0.02 5.78±1.66 0.12±0.05 9.43±2.38 91.95±26.68 76.43±7.24 11.95±0.72 

100 26 0.02 5.32±1.36 0.12±0.07 0.64 ±0.04 1.83±0.55 76.08±19.63 24.15±6.03 0.23±0.18 6.74±1.09 0.15±0.01 11.65±3.06 105.15±9.03 79.83±4.44 12.23±0.37 

B. 
rapa 

07224 

20 0 0.00 16.50±0.24 0.62±0.02 0.78±<0.01 0.37±0.03 39.86±10.83 5.43±1.38 0.08±0.02 0.51±0.03 0.32±0.10 13.75±0.96 26.25±6.08 1.72±0.53  

20 13 0.00 13.69±2.33 0.54±0.20 0.77±0.01 0.45±0.07 90.78±25.71 17.20±9.94 0.75±0.33 6.09±0.84 0.30±0.19 21.30±4.02 151.78±22.36   

50 13 0.00 13.15±1.97 0.45±0.10 0.78±0.01 0.40±0.04 116.36±23.98 21.85±5.73 0.92±0.32 15.59±3.29 0.12±0.04 17.18±2.18 102.75±13.57   

75 13 0.01 12.10±2.05 0.56±0.26 0.77±0.01 0.48±0.08 31.39±11.05 6.42±5.78 0.47±0.30 7.53±1.48 0.64±0.24 17.39±1.25 93.88±13.21   

100 13 0.01 11.48±1.30 0.46±0.14 0.77±<0.01 0.49±0.03 155.94±28.43 31.92±12.23 0.16±0.08 4.36±0.85 0.12±0.03 20.02±1.67 85.93±7.75   

20 26 0.00 10.58±0.81 0.39±0.16 0.77 ±0.01 0.48±0.06 9.55±2.42 22.16±18.20 0.06±0.01 2.04±0.76 0.66±0.33 31.75±5.60 85.63±7.35 48.13±3.20 5.30±0.40 

50 26 0.01 10.62±2.24 0.35±0.14 0.77±<0.01 0.44±0.03 76.40±38.05 8.01±3.30 0.18±0.12 2.83±1.44 0.61±0.33 24.65±5.00 87.75±9.40 44.03±4.39 3.93±0.28 

75 26 0.01 8.68±2.15 0.19±0.07 0.74 ±0.02 0.69±0.16 30.48±7.26 6.59±2.60 0.42±0.36 8.01±0.45 0.67±0.32 20.05±4.08 62.33±11.06 32.15±0.90 3.40±0.23 

100 26 0.02 6.08±1.16 0.06±0.02 0.74 ±0.01 0.72±0.11 41.39±8.12 7.29±1.16 2.06±0.45 17.60±1.83 0.31±0.07 9.68±1.51 59.35±8.29 31.35±3.28 2.80±0.51 

B. 
juncea 
15127 

20 0 0.00 14.75±0.29 0.56±0.08 0.79±<0.01 0.30±0.03 77.62±25.11 6.92±1.47 0.20±0.07 1.90±0.42 0.14±0.02 14.18±1.50 33.54±2.73 1.90±0.06  

20 13 0.00 15.59±1.64 0.54±0.21 0.76 ±0.01 0.55±0.08 51.38±21.32 29.75±9.86 0.09±0.05 3.14±0.50 0.39±0.22 18.94±0.88 159.94±15.94   

50 13 0.00 10.36±2.94 0.16±0.05 0.76±<0.01 0.52±0.01 64.36±5.48 26.98±7.54 0.14±0.03 4.26±0.63 0.14±0.03 19.51±1.27 96.34±12.43   

75 13 0.01 10.13±2.59 0.39±0.31 0.78±<0.01 0.42±0.04 56.82±14.27 31.36±14.90 0.30±0.15 5.29±1.58 0.30±0.17 18.28±1.95 147.13±13.12   

100 13 0.01 9.53±2.40 0.56±0.37 0.72 ±0.02 0.68±0.04 78.46±18.50 13.21±6.57 0.18±0.11 6.17±1.39 0.20±0.10 14.87±0.89 92.88±10.97   

20 26 0.00 9.85±1.67 0.37±0.24 0.78 ±0.01 0.37±0.06 42.93±11.42 16.11±11.64 0.29±0.10 9.49±0.88 0.24±0.05 15.28±0.47 101.10±20.86 60.05±3.51 9.55±0.67 

50 26 0.01 7.56±1.54 0.15±0.09 0.77 ±0.01 0.44±0.05 31.38±5.50 17.36±5.21 0.14±0.08 11.68±3.10 0.39±0.06 18.90±2.14 107.45±8.88 65.08±3.37 11.82±0.66 

75 26 0.01 5.43±0.58 0.04±0.01 0.74 ±0.01 0.71±0.07 11.39±1.23 8.78±2.81 0.05±0.02 6.36±2.85 1.22±0.15 14.15±1.18 94.93±5.65 65.43±3.40 12.75±0.66 

100 26 0.02 2.65±0.72 0.06±0.02 0.72 ±0.02 0.94±0.20 15.44±4.89 6.94±3.66 0.49±0.17 11.72±1.69 0.72±0.14 11.00±2.45 76.73±15.93 41.38±2.44 6.68±0.35 

TABLE 1. Mean data over 3 timepoints (before exposure i.e., day 0, mid-exposure, day 13, and after exposure, day 26); n=4; ±SEM.  
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