Compliance in an anti-hypertension trial : a latent process model for binary longitudinal data.

Smith, David M. and Diggle, Peter J. (1998) Compliance in an anti-hypertension trial : a latent process model for binary longitudinal data. Statistics in Medicine, 17 (3). pp. 357-370. ISSN 1097-0258

Full text not available from this repository.

Abstract

We propose an alternative to the method of generalized estimating equations (GEE) for inference about binary longitudinal data. Unlike GEE, the method is practicable when the data consist of long time series on each subject and the set of observation times is not necessarily common to all subjects. Instead of modelling the intra-series correlations explicitly, we assume that a subject's propensity to respond is governed by an underlying, but unobserved, stationary continuous process. Given a realization of this process, we assume that the binary responses are conditionally independent, with the probability that a subject responds positively at any given time t depending on the value of the underlying process at that time and also on any covariates specific to the subject at that time. We develop an algorithm for estimating the parameters in this model, and investigate its effectiveness using simulation methods. We also apply the methodology to data collected in a trial investigating the effect of self-measurement of blood pressure on compliance in taking medication during a course of anti-hypertension treatment.

Item Type:
Journal Article
Journal or Publication Title:
Statistics in Medicine
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2700/2713
Subjects:
?? epidemiologystatistics and probabilityr medicine (general) ??
ID Code:
19515
Deposited By:
Deposited On:
11 Nov 2008 16:34
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 09:44