Blower, Gordon and Kelsall, Julia E.
(2002)
*Non-linear kernel density estimation for binned data: convergence in entropy.*
Bernoulli, 8 (4).
pp. 423-449.
ISSN 1350-7265

## Abstract

A method is proposed for creating a smooth kernel density estimate from a sample of binned data. Simulations indicate that this method produces an estimate for relatively finely binned data which is close to what one would obtain using the original unbinned data. The kernel density estimate {\hat f}\, is the stationary distribution of a Markov process resembling the Ornstein-Uhlenbeck process. This {\hat f}\, may be found by an iteration scheme which converges at a geometric rate in the entropy pseudo-metric, and hence in L1\, and transportation metrics. The proof uses a logarithmic Sobolev inequality comparing relative Shannon entropy and relative Fisher information with respect to \hat f.

Item Type: | Journal Article |
---|---|

Journal or Publication Title: | Bernoulli |

Uncontrolled Keywords: | /dk/atira/pure/researchoutput/libraryofcongress/qa |

Subjects: | |

Departments: | Faculty of Science and Technology > Mathematics and Statistics |

ID Code: | 19254 |

Deposited By: | ep_ss_importer |

Deposited On: | 14 Nov 2008 15:14 |

Refereed?: | Yes |

Published?: | Published |

Last Modified: | 19 Feb 2020 07:54 |

URI: | https://eprints.lancs.ac.uk/id/eprint/19254 |

### Actions (login required)

View Item |