Non-linear kernel density estimation for binned data: convergence in entropy.

Blower, Gordon and Kelsall, Julia E. (2002) Non-linear kernel density estimation for binned data: convergence in entropy. Bernoulli, 8 (4). pp. 423-449. ISSN 1350-7265

Full text not available from this repository.

Abstract

A method is proposed for creating a smooth kernel density estimate from a sample of binned data. Simulations indicate that this method produces an estimate for relatively finely binned data which is close to what one would obtain using the original unbinned data. The kernel density estimate {\hat f}\, is the stationary distribution of a Markov process resembling the Ornstein-Uhlenbeck process. This {\hat f}\, may be found by an iteration scheme which converges at a geometric rate in the entropy pseudo-metric, and hence in L1\, and transportation metrics. The proof uses a logarithmic Sobolev inequality comparing relative Shannon entropy and relative Fisher information with respect to \hat f.

Item Type:
Journal Article
Journal or Publication Title:
Bernoulli
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2600/2613
Subjects:
?? binned datadensity estimationkernel estimationlogarithmic sobolev inequalitytransportationstatistics and probabilityqa mathematics ??
ID Code:
19254
Deposited By:
Deposited On:
14 Nov 2008 15:14
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 09:41