Reinforced Learning for Label-Efficient 3D Face Reconstruction

Mohaghegh, Hoda and Rahmani, Hossein and Laga, Hamid and Boussaid, Farid and Bennamoun, Mohammed (2023) Reinforced Learning for Label-Efficient 3D Face Reconstruction. In: IEEE International Conference on Robotics and Automation (ICRA) :. UNSPECIFIED. (In Press)

[thumbnail of ICRA2023]
Text (ICRA2023)
ICRA2023.pdf - Accepted Version
Available under License Creative Commons Attribution.

Download (6MB)


3D face reconstruction plays a major role in many human-robot interaction systems, from automatic face authentication to human-computer interface-based entertainment. To improve robustness against occlusions and noise, 3D face reconstruction networks are often trained on a set of in-the-wild face images preferably captured along different viewpoints of the subject. However, collecting the required large amounts of 3D annotated face data is expensive and time-consuming. To address the high annotation cost and due to the importance of training on a useful set, we propose an Active Learning (AL) framework that actively selects the most informative and representative samples to be labeled. To the best of our knowledge, this paper is the first work on tackling active learning for 3D face reconstruction to enable a label-efficient training strategy. In particular, we propose a Reinforcement Active Learning approach in conjunction with a clustering-based pooling strategy to select informative view-points of the subjects. Experimental results on 300W-LP and AFLW2000 datasets demonstrate that our proposed method is able to 1) efficiently select the most influencing view-points for labeling and outperforms several baseline AL techniques and 2) further improve the performance of a 3D Face Reconstruction network trained on the full dataset.

Item Type:
Contribution in Book/Report/Proceedings
ID Code:
Deposited By:
Deposited On:
17 Jan 2023 09:45
In Press
Last Modified:
13 Jun 2024 00:21