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Abstract—3D face reconstruction plays a major role in
many human-robot interaction systems, from automatic face
authentication to human-computer interface-based entertain-
ment. To improve robustness against occlusions and noise, 3D
face reconstruction networks are often trained on a set of in-the-
wild face images preferably captured along different viewpoints
of the subject. However, collecting the required large amounts
of 3D annotated face data is expensive and time-consuming. To
address the high annotation cost and due to the importance
of training on a useful set, we propose an Active Learning
(AL) framework that actively selects the most informative
and representative samples to be labeled. To the best of our
knowledge, this paper is the first work on tackling active
learning for 3D face reconstruction to enable a label-efficient
training strategy. In particular, we propose a Reinforcement
Active Learning approach in conjunction with a clustering-
based pooling strategy to select informative view-points of the
subjects. Experimental results on 300W-LP and AFLW2000
datasets demonstrate that our proposed method is able to 1)
efficiently select the most influencing view-points for labeling
and outperforms several baseline AL techniques and 2) further
improve the performance of a 3D Face Reconstruction network
trained on the full dataset.

I. INTRODUCTION

Monocular 3D face reconstruction enables a wide range
of computer vision applications in face recognition, hu-
man—computer interactions, virtual/augmented reality and
autonomous driving [1]. Recently, deep learning based 3D
face reconstruction methods [2], [3], [4], [5], [6], [7], [8],
[9] have demonstrated significant success due to improved
representation power. However, such models need to be
trained on large-scale 3D training datasets. Such datasets
are extremely time-consuming and expensive to collect and
annotate. To achieve effective 3D face reconstruction given a
limited annotation budget, we resort to selecting a subset of
informative examples as training data and sending them to a
human oracle to be annotated. The process will be repeated
until the termination criterion (e.g., when the annotation
budget is exhausted) is met. Specifically, we propose a
reinforced active learning framework in which by selecting
the most influencing and representative samples to label,
the reconstruction algorithm can achieve a high performance
with a minimum number of annotated face images. We
investigate the scenario of: “Which viewpoint per subject
is more informative?” and based on that, we define the
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corresponding pooling and selection strategy as follows. As
each query subject arrives, we perceive its corresponding
viewpoints as the unlabeled gallery pool. Here, we aim to
discard the misleading and confounding viewpoints and find
the most informative ones among multiple possible views
per subject to train the 3D face reconstruction network. In
most existing works, the core of the AL-based methods,
i.e., sampling unit, uses some heuristic selection methods
to maximize the informativeness and representativeness of
the selected samples [10], [11], [12], [13], [14], [15], [16].
Rather than manually defined heuristics, we leverage a Rein-
forcement Learning model in which an active learner learns
the sampling policy in a data-driven manner. In the proposed
framework, the view-point selection decision is made based
on 3D reconstruction model’s prediction and its uncertainty
to account for the informativeness of the selected samples.
In addition, we enforce diversity, to avoid redundancy, using
a clustering-based pooling in our AL framework. Clustering
unlabeled data based on the face identity features ensures
broad coverage over the entire data. By minimizing the error
metric between the estimated and the ground truth 3D face,
the RL agent is trained to find the most informative and
discriminative samples over a set of unlabeled face images.

In summary, our contributions are: (1) We propose a label-
efficient learning strategy for 3D face reconstruction under
Active Learning framework. (2) In our proposed framework,
for the first time we successfully learn a Reinforcement
Learning-based acquisition function as a sampling strategy
such that a 3D face reconstruction network can achieve a high
performance with a minimum number of labeled data. (3)
The proposed pooling strategy in conjunction with the model
uncertainty leveraged in our RL agent training process allows
the sampling strategy to exploit both representativeness and
informativeness. (4) With the extensive experiments on both
3D face reconstruction and face alignment (landmark de-
tection) tasks on AFLW2000 and 300W-LP datasets [9], we
demonstrate the superiority of the proposed learning strategy
over competitive AL baselines with significant performance
gain whilst using much less annotations. Particularly, on
300W-LP and AFLW2000, our method achieves nearly the
same performance as the 3D reconstruction model trained on
the whole training set, using less than 30% and 40% of data,
respectively.

II. RELATED WORK

A. 3D Face Reconstruction

Various approaches have been proposed to tackle the
inherently ill-posed problem of 3D face reconstruction from
a single image; see [17] for a detailed survey. The biggest
obstacle to applying deep networks to 3D face reconstruction



lies in the lack of training data. This is because collecting
a large amount of 2D face images together with the corre-
sponding 3D ground truth required by deep learning-based
approaches is both time and cost consuming.

For supervised methods, the ground-truth 3D geome-
try of human faces can be generated by time-consuming
optimization-based methods, such as Gaussian Process [18]
and Parameterized Spline [19]. For face images in the
wild, which would exhibit occlusions, non-uniform lighting
and cluttered backgrounds, such methods cannot guarantee
accurate ground-truth geometry without human intervention.
Consequently, we cannot easily collect a large amount of
3D annotated training data, and the reconstruction accuracy
of supervised methods is thus restricted by the inadequate
amount of training data.

Another solution is to focus on un/self-supervised learn-
ing. Recently, several works proposed to supervise the re-
construction procedure by utilizing the reconstruction (pho-
tometric) or adversarial loss on the rendered images without
using any explicit 3D annotations [20], [21], [22]. However,
in fully unsupervised approaches, calculating such losses
requires simultaneously estimating both shapes and textures.
Given that the initial estimation is far from ideal to render
meaningful images, the unfaithful reconstructions might be
obtained. Also, such methods suffer from the depth-scale
ambiguity and thus may predict an incorrectly scaled face

[2].

B. Active Learning in Computer Vision Tasks

Active Learning is a well-studied research domain applied
to several tasks, e.g., semantic segmentation [23], [24], [25],
image classification [13], [26], [27], 3D hand pose estimation
[28], [29], human pose estimation [30], [31] and natural
language processing [32], to reduce the data labeling effort.
Ren et al. [33] provides a recent survey of various standard
active learning methods for various tasks. The goal of AL
is to obtain satisfactory performance for the model at the
smallest possible labeling cost. In other words, given a
machine learning model and a pool of unlabeled data, instead
of asking human to label all the unlabeled data, AL iteratively
selects which samples should be labeled next. Existing AL
approaches have examined both pooling-based [28], [29],
[31], [30] and stream-based [32], [34] strategies. In the
former class, datapoints are selected from a large pool of
unlabeled data and in the later one, the unlabeled samples
are provided one by one and the decision is to label it or
not.

In this paper, we propose a pooling-based active learning
framework for 3D face reconstruction to enable a label-
efficient learning strategy. To the best of our knowledge,
there has been no study of the applicability of AL to 3D
reconstruction, especially for 3D facial data. Rather than
using manually-designed heuristics, we propose a reinforce-
ment active learner that learns the sampling policy from data.
Unlike most of existing uncertainty-based sampling tech-
niques, which directly query for most ambiguous samples,
we leverage uncertainty as a measure of informativeness, in a

Markov Decision Process. Our framework differs from other
existing methods by the task we tackle, the formulation of
our sampling space, and details of the reinforcement active
learner we employ to find the optimal policy.

I1I. METHODOLOGY

In this section, we first outline the overall pipeline of
our proposed framework for label-efficient 3D face recon-
struction and then we elaborate on different components of
the pipeline. Our goal is to train a 3D face reconstruction
network on a minimum number of view-points per person
while maximizing its performance. To this end, a query
network (an agent) selects the most informative samples
among a pool of unlabeled data, which are then annotated by
a human oracle. These samples are added to the labeled set
used to train the supervised 3D reconstruction network. This
process is done iteratively until a given annotation budget is
achieved.

The active learner in our framework is formalized as a
Markov Decision Process (MDP), which allows the learning
of a Reinforcement Learning agent. We adopt the Q-learning
algorithm [35] to solve this MDP problem resulting in
intelligent selection of the most informative samples by a
policy network. In what follows, we detail the mechanism
for learning the policy network yielding a labeling decision.

A. Overall Framework

As can be seen in Fig 1, given a set of unlabeled samples,
our method first clusters the unlabeled face images based on
their identities with each cluster containing a single subject
along with its various view-points. Thus, as each query
subject arrives, all of its corresponding view-points together
with the query data are considered as our unlabeled gallery
pool. Instead of selecting one subject per iteration, which is
highly inefficient since each iteration involves updating the
3D face reconstruction network and computing the reward,
we propose to select a number of subjects Kg,p in each
iteration. At each time step ¢, the environment provides an
observation (state-action representation), which describes the
relationship between samples, using the concatenation of the
current network’s prediction and its uncertainty. It receives a
response from the agent by providing scores for candidates
in the pool and selecting an action. The agent requests the
sample with the highest score among the unlabeled gallery
pool being annotated by the human oracle. Instead of a
human oracle, as common in active learning approaches, we
mask out the ground truth of the fully labeled dataset and
reveal them when the active learning algorithm selects them
to be annotated. However, in real-life applications of our AL
framework, we can apply it in a setting with unlabeled data
with a human in the loop labeling the selected data.

When sufficient viewpoints from a number of subjects are
obtained, the labeled dataset will be updated and the 3D
face reconstruction model’s (here, PRN [6]) parameters are
updated, which in return generates a new trained network
for computing state and action representations. Then, the
agent receives a reward based on the improvement in the
performance of the 3D face reconstruction network trained
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Fig. 1. Proposed deep reinforcement learning in which an agent is designed to dynamically select the most informative instances for 3D Face Reconstruction

network.

with the selected samples. All subjects will be browsed
once and the whole process terminates when the pre-defined
budget is reached. In summary, during training, the algorithm
iterates over each subject to play the best viewpoint selection
game. Each iteration of the game consists of the following
steps:

1. Computing the state-action representation (s, a;) on
query and candidates as a function of PRN (Section 3.2).

2. Selecting actions A; by following the scores that a
policy network IT generates. The actions define the K eq
viewpoints per subject with the highest score to be annotated.

3. Updating the labeled and unlabeled set by adding the
selected viewpoint and its ground truth to the labeled set
ie., DtL+1 = D! U (xj,y5),7 = 1,..., Keup X Kyiew and
removing them from unlabeled set i.e., ijrl = D‘{] —
(x]7yj)7j =1,..., Ksup X Kyiew-

4. Training the 3D face reconstruction network using the
updated labeled set with the recently added viewpoints D’SL+1
to generate PRN'*1,

5. Computing the reward R as the difference of 3D face
reconstruction’s performance between PRN'*! and PRN?
on the reward set (D,.).

More details regarding the notations and the entire algo-
rithm can be found in Algorithm 1. Below, we elaborate
on the detailed definition of the state-action representation,
reward and policy learning.

B. State-Action Representation

In order to find the optimal policy, the agent interacts with
the environment and receives data, which is used during the
training of the Q-Network. Q-Networks in general, map envi-
ronment states to agent actions that maximize the expected
sum of rewards [36]. To help the agent to make the best
decision and select the most informative samples, the pro-
posed state should ideally characterize the distribution gap
between the labeled data and the unlabeled data at iteration
t. On the other hand, action should represent the contribution
of the candidate unlabeled sample when it is selected to
be labeled. Here, we rely on a Deep Q-Network, which
takes the state-action representation as input and returns a
single value as the score of each action. In other words,
each action A; is associated with a candidate view-point in
our clustered unlabeled pool. To assist the decision process,
we applied the combined state-action representation at time

t as it describes the relationship between the candidate view-
points being considered for annotation, the query image and
the labeled dataset constructed up to time ¢. This relationship
is represented by the ensemble of two different feature sets:
one describes the network’s prediction and the other one
approximates the model uncertainty.

The first set of features is directly extracted from the
output of our 3D face reconstruction network, i.e., PRN [6],
trained on the current labeled dataset. The second set of fea-
tures, i.e., epistemic uncertainty, accounts for the uncertainty
in the model parameters. Many AL acquisition functions
directly utilize model uncertainty to select the most ambigu-
ous samples. Unlike existing uncertainty-based approaches,
we deployed this informative cue as an observation of the
environment for the policy network to make its decision.
However, modeling the uncertainty in regression problems
is not as straightforward as for classification tasks whose
uncertainty is estimated by the posterior probability of a class
[37]. To model the uncertainty in our regression problem, we
first make our 3D face reconstruction network a probabilistic
model by an approximation of a Bayesian Neural Network.
Particularly, we use the Monte Carlo Dropout (MCD) tech-
nique [38] to obtain an approximation of the posterior’s mean
and variance.

In practice, by applying MCD, we obtained a Bayesian
model in which by L times passes of a sample, our first set
of features is calculated as follows:

1 L
Hpred = E ;ylv

where y; is the model’s prediction at [*"* time and Hpred 18
the average of predictions over L forward passes through the
network. In the Bayesian approximation, the second set of
features, i.e., epistemic uncertainty, can be evaluated using
variational inferences as follows:

L
1
Oepis = Z Z le - M?yred' (2)

To summarise, the final staltE-laction representation at time
t, is the concatenation of these two sets of features (ipred
and o.p;s) for the query sample and candidate view-points.
To avoid intensive memory usage, we need to downsample
our state-action representation pair. Finally, the agent scores
each state-action representation pair (S?, A*) corresponding
to the unlabeled viewpoint z; and takes the action A® with the

(D



Algorithml. Learning an active learning policy

Input: Dy, Dy, Dy, N, Ny, Ksyp, Kyiew, B, Pre — trained PRN
Output: Trained policy network

1: for episode i = 1,2, ..., N do:

2: Reload Pre — trained PRN, D, « @ and shuffle clustered D
3: while the labeling budget (B) is not spent, do:

4: Select Kg,,;, query samples and their N, corresponding
viewpoints to build the pool.
5: For each subject, score each viewpoint using the policy

net and the computed state-action representations S¢t, A%,

Sort the viewpoints based on the scores and select K¢,

viewpoints with the highest scores for each subject.

Update D;: D;= D; + K\, Selected views

Update Dy: Dy= Dy - Kyjew Selected views

: Train PRN on updated D, =» PRN¢*?

0: Compute the reward on D, R*

1 Select Kj,,;, new subjects and their corresponding

viewpoints to build the new pool.

12: Compute state representation St+*

13: Add the (S¢, A%, St*1, RY) to the experience buffer.

14: Use the standard DQN algorithm to optimize the policy
network using the experience dataset.

15: end while

16: end for

17: return trained policy network

@
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highest score. When the informative viewpoint is chosen, an
oracle is requested to label the sample. The newly annotated
sample is added to the training data and PRN is subsequently
updated.

C. Reward

Each time the 3D face reconstruction network is trained on
the recently added viewpoints, the agent receives a reward,
which provides feedback on the quality of the actions made
by the agent. Here, the reward is defined as the change in
the performance of the 3D face reconstruction model, i.e.,
R(s¢,a) = Error(PRN'™1) — Error(PRN?) on D, set.
In this equation, Error denotes the normalized Mean Error
between the outputs of 3D Face Reconstruction network
(here, UV-position maps) and PRN**! is the trained model
after action a has taken place.
D. RL-based Policy Learning

In our Active Learning framework, we adopt a Reinforce-
ment Learning approach to learn an optimal policy using
the above-mentioned components. In particular, we formulate
the problem of finding an optimal policy, which maps a
state into an appropriate action (i.e., choosing the appropriate
viewpoints) as a Markov Decision Process (MDP). This
process is described by (s¢, at, 7, $¢+1) which stand for the
states, actions, rewards and next states, that the agent turns
to through the actions. Following Mnih [39], we adopt a
technique known as experience replay where we store the
agent’s experiences at time ¢, (S, a,7t, S¢+1) into a replay
memory M. A mini-batch of transitions from an experience
buffer is then sampled randomly and will be fed to the Deep
Q-Network to generate Q™ (s, a). Training DQN is basically
a regression problem where the objective is to match Q-
values predicted by DQN and the expected (target) Q-values
from the Bellman equation: r; + ymax,Q(s;+1, a), where r
is the immediate reward and + is the discount factor which

controls the contribution of rewards. Following Mnih [39],
we performed the stochastic gradient descent on the loss
function:

L(8) = (y; — Qs ;)" 3)
Here, y; = r; + ymax,/Q(s;+1,a/) is the target Q-value
based on the current parameters. There are two approaches
to design the architecture of the deep Q-network. In the
standard one proposed in [39], the Q-function takes the state
representation as the input and generates the Q-value of all
possible actions. The second approach takes the state and the
action as the input to the Q-function and adapts the standard
DQN architecture accordingly to produce the single Q-value
of the action. We adopt the second architecture to design our
DQN due to the different numbers of viewpoints per subject
(i.e., different number of possible actions for each subject or
query image).

IV. EXPERIMENTS

We conducted extensive experiments on 3D face recon-
struction and dense alignment to evaluate the performance
of the proposed label-efficient framework.

A. Experimental Setting

We trained our active learning framework on 300W-LP
[9], as it is the only publicly available dataset containing face
images across different angles with fitted 3DMM parameters.
As explained in Section 3, we split 300W-LP into the five
subsets D;nits Dryews Dyal, Dir and Dy.s;, which contain
approximately 25K, 2K, 3K, 30K and 1225 images, respec-
tively. In addition to Dy.st, we used AFLW2000 dataset
[9] to evaluate the performance of the proposed AL-based
framework. In our AL-based framework, we use the Position
map Regression Network (PRN) [6], a very light weight
model, to jointly predict dense alignment and reconstruct
3D face shape. As our proposed model consists of a deep
active learning framework on the top of a 3D face recon-
struction module, it can be easily adjusted for other 3D face
reconstruction networks.

For quantitative evaluation, we used NME2D and
NME3D, which represent the Normalized Mean Error
(NME) between the ground truth UV-position map and
predicted one in 2D and 3D spaces, respectively. We also
evaluated the face alignment performance using NME on
a sparse set of 68 facial landmarks in which the bounding
box size is used as the normalization factor. The annotation
budget size, B, the number of subjects to select, K, and
the number of viewpoints per subject to select, Kyjeqw, in
each AL iteration were set to 27000, 50 and 1, respectively.

B. Competing Methods

We compared the proposed method against the following
seven baselines in AL approaches. The first four are model-
free sampling strategies and the next three are model-based
algorithms that have been used in most of the comparative
analyses in the literature. Since there is no prior work on
active learning for 3D Face Reconstruction, we explored the
following AL strategies proposed in other active learning
domains and adapted them to our task. The details of these
approaches are described as follows:
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Fig. 2. Quantitative comparison of different AL baselines on AFLW2000 dataset (a)-(d) and 300W-LP dataset (e)-(h). The results of 3D Face Reconstruction
are presented in (a), (b), (e), (f) and the results of landmark detection are presented in (c), (d), (g) and (h). Lower is better in all sub-figures.

Random Sampling (RND) is a typical approach for anno-
tating data by uniformly sampling the unlabeled pool.
Exploration Guided Active Learning (EGAL) is an ex-
ample of a density-weighted approach, which also takes into
account the representativeness of each instance of the dataset
as a whole. The choice of the balancing parameter w was
shown to play an important role in the effectiveness of the
EGAL selection strategy. For w = 0.25, the EGAL algo-
rithm was shown to consistently outperform other sampling
strategies [14].

Pure Diversity (DVST) with w = 0, EGAL results in a
purely diversity-based sampling as only the most diverse
example is added to the candidate set; and so will be selected
regardless of density [14].

Pure Density (DNST) with w = 1, EGAL results in a
density-only approach as all unlabelled examples are added
to the candidate set, regardless of their diversity score [14].
Uncertainty Sampling (UNCERT) is a widely used selec-
tion criteria, which selects the topmost uncertain data with
maximum cumulative epistemic variances [40].

Bayesian Active Learning by Disagreement (BALD) is
a sampling technique, which selects a data point that is
expected to maximise the information gained about the
model parameters, i.e., maximise the mutual information
between predictions and model posterior [13].

Query By Committee (QBC) is an active learning approach,
which builds a committee of learners from existing labeled
training data set and queries the instances that cause maxi-
mum disagreement among the committee. We have tested the
QBC algorithm with different numbers of committees e.g.,
3,4, 5 and 7 and reported its best performance i.e., using 7
committees [15].

C. Comparison Results

We quantitatively evaluated our proposed framework for
label-efficient 3D face reconstruction and face alignment
(facial landmark detection). To have a fair comparison with
other AL methods, the same pooling strategy was adopted
before applying active learning techniques. Fig. 2 shows the
various quantitative results in terms of the four different

evaluation metrics described in Section IV-A. Figs. 2 (a-
d) show the error values as a function of the percentage
of annotated data on AFLW 2000 dataset. We continue
the curves until 70% of all initially unlabeled data has
been labelled. The PRN achieves 0.038, 0.052, 0.042, and
0.057 for 2D NME, 3D NME, 2D landmark NME and
3D landmark NME, respectively, by being trained with all
labeled data in 300W-LP. We obtain these errors using only
less than 40% of labeled data. This shows the effectiveness
of our proposed framework in reducing the labelling cost,
which is important for the 3D reconstruction task. Fig. 2
also compares our proposed method against various AL
baselines at different AL iterations. It can be observed that
our approach outperforms the baselines by a clear margin
for every fixed budget, except for 50% where we achieve a
similar performance as BALD in Fig. 2 (b-d).

Fig. 2 (e-h) show quantitative results on 300W-LP test
set for different budget sizes. Here, we also observe that
our method outperforms the baselines for all budget points,
which demonstrates the effectiveness of our sampling strat-
egy. By labeling approximately 9K images, corresponding to
only 30% of the total images, we obtained the performance of
fully supervised PRN if it had access to all annotated data. To
reach the same output, the closest method to us, i.e., BALD,
requires more than 15K labeled images. The superiority
of our method is more visible in the first iterations, for
which we can achieve nearly the same result as a fully
supervised model using only 20% of data. Other approaches
require significantly more annotated data to achieve the same
performance. From Fig. 2, it can be inferred that DVST and
DNST, despite being less computationally intensive, have
almost always the lowest performance on both datasets as
they just consider the diversity and density of images in
the sampling process. EGAL could improve their efficiency
by combining diversity and density in an effective way.
However, this model-free sampling approach still does not
deliver satisfactory performance especially in the first iter-
ations, while it can gradually achieve comparable one to
other baselines when labeling larger fractions of the data.
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3D Face Reconstruction under different active selection strategies where the annotation budget is set as 50% (15K). The ground truth 3D meshes

(GT) and reconstructed 3D meshes by fully supervised PRN, trained on 100% of data (FS), are shown in second and third columns, respectively. Using
only 50 % of training data, selected by our proposed sampling method, the PRN is capable of recovering accurate 3D faces.

Rather than adopting a fixed heuristic selection strategy,
our proposed method learns what kind of data points are
most informative and beneficial for training the model using
the current state of the trained network. In such a data-
driven scenario, our method is able to efficiently select
the most informative samples to label so that the 3D face
reconstruction model can reach the best possible performance
in a cost-effective way.

We also qualitatively evaluated our proposed AL frame-
work on 3D face reconstruction. We present a comprehensive
comparison with common active learning baselines in Fig. 3
where the annotation budget is set as 15K (50% of the whole
dataset). In this figure, the ground truth and the results of the
fully supervised PRN trained on 100% of data, are shown
in column 2 and 3, respectively. It can be seen that our
method outperforms all alternative active learning methods
and the reconstructed meshes are closer to that of the ground
truth. These characteristics are more visible for faces with
extreme poses as shown for the third and forth input images.
In particular, for faces with extreme poses and occlusions,
the PRN trained on selected data by other AL methods has
more difficulties to recover the detailed shapes as there are
not sufficiently effective training samples for such poses.
However, by selecting the informative viewpoints of each
subject, our policy network is able to reconstruct faithful 3D
shapes.

D. Ablation Study

Effect of the AL parameters. To analyse the effect of
user-defined parameters (e.g., the number of subjects per
iteration K, and the number of selected viewpoints per
subject K iey) On our proposed framework, we report the
results of our method using various K, and K., values.

In Fig. 4-a, we investigate the performance of our method
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Fig. 4. Results of ablation tests on 300W-LP dataset using various (a) K g3
and (b) Kyiew. Smaller budget size allows our method to react faster to
the training outcomes.
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under different K,; on the 300W-LP dataset. Regardless
of the choice of Kj,;, our method is seen to consistently
outperform almost all the other AL baselines with the best
performance obtained when K, is set to 50.

We also looked into the sensitivity of our proposed method
to the number of selected viewpoints per subject by training
the model under various K ;... From 4-b, it can be observed
that by increasing the number of selected viewpoints from
1 to 7, the performance declines while the training time is
reduced. However, they still outperform other AL baselines,
which demonstrates the stability of our method for a wide
range of budget sizes.

Effect of the state-action representations. We further
performed an ablation study to evaluate the contribution
of each component in our state-action representation. We
investigated the influence of state-action components by
individually excluding them from the full model. In Table I,
we report the model performance for different active learning
iterations on both AFLW2000 and 300W-LP datasets. It can
be clearly concluded that all terms contribute to performance
improvement and that our full model gives the lowest average

NME error.
TABLE 1

ABLATION STUDY ON THE VALIDITY OF TWO COMPONENTS IN OUR
STATE-ACTION REPRESENTATION.

AFLW2000 300W-LP
Oepis  Hpred
3K 6K 9K 15K 3K 6K 9K 15K
v — 0.072  0.047 0.045 0.041 | 0.063 0.037 0.024 0.021
- v 0.076  0.051 0.042 0.042 | 0.060 0.034 0.032 0.024
v v 0.069 0.043 0.039 0.036 | 0.038 0.025 0.022 0.019

) V. CONCLUSION ) )
In this paper, we took the first steps towards active learning

for label-efficient 3D face reconstruction. We successfully
employed a DQN-based reinforcement learning agent in the
sampling unit of our proposed AL framework to select in-
formative view-points and discard redundant and misleading
ones. Under the proposed pool-based scenario, we achieve
the lowest NME with the least amount of data for both
3D face reconstruction and facial landmark detection tasks
on two well-known face datasets. We have shown that
our proposed learning strategy outperforms competitive AL
baselines and even the 3D face reconstruction model trained
on the whole training set.
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