Rubbi, Fazlay and Das, Likhan and Habib, Khairul and Saidur, R. and Yahya, Syed Mohd and Aslfattahi, Navid (2022) MXene incorporated nanofluids for energy conversion performance augmentation of a concentrated photovoltaic/thermal solar collector. International Journal of Energy Research, 46 (15). pp. 24301-24321. ISSN 0363-907X
Likhan_IJER_Authors_version.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (311kB)
Abstract
This research work introduces emerging two-dimensional (2D) MXene (Ti3C2) and Therminol55 oil-based mono and hybrid nanofluids for concentrated photovoltaic/thermal (CPV/T) solar systems. This study focuses on the experimental formulation, characterization of properties, and performance evaluation of the nanofluid-based CPV/T system. Thermo-physical (conductivity, viscosity, and rheology), optical (UV-vis and FT-IR), and stability (Zeta potential and TGA) properties of the formulated nanofluids are characterized at 0.025 wt.% to 0.125 wt.% concentrations of dispersed particles using experimental analysis. By suspending the nanomaterials, photo-thermal energy conversion is improved considerably, up to 85.98%. The thermal conductivity of pure oil is increased by adding Ti3C2 and CuO nanomaterials. The highest enhancements of up to 84.55% and 80.03% are observed for the TH-55/Ti3C2 and TH-55/Ti3C2 + CuO nanofluids, respectively. Furthermore, dynamic viscosity decreased dramatically over the temperature range investigated (25°C-105°C), and the nanofluid exhibited dominant Newtonian flow behavior as viscosity remained nearly constant up to a shear rate of 100 s−1. Numerical simulations of the experimentally evaluated nanofluids are performed to evaluate the effect on a CPV/T collector using a three-dimensional transient model. The numerical analysis revealed significant improvements in thermal and electrical energy conversion performance, as well as cooling effects. At a concentrated solar irradiance of 5000 W/m2 and an optimal flow rate of 3 L/min, the highest thermal and electrical energy conversion efficiency enhancements are found to be 12.8% and 2%, respectively.